Iron carbon diagram

1,306 views 43 slides Oct 07, 2019
Slide 1
Slide 1 of 43
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43

About This Presentation

Iron Carbon dig, describing the transformation of molten iron -carbon alloy in equilibrium to different phases.


Slide Content

IRON IRON-CARBON
DIAGRAM

IRON IRON-CARBON DIAGRAM
Ferrite
Austenite
Steel Cast iron
Pearlite
Pearlite and
Cementine
Pearlite and
Carbide
Eutectic
eutectoid

Outline
Introduction
Coolingcurveforpureiron
Definitionofstructures
Iron-Carbonequilibriumphasediagram–Sketch
TheIron-IronCarbideDiagram-Explanation
TheAustenitetoferrite/cementite
transformation
Nucleation&growthofpearlite
EffectofC%ageonthemicrostructureofsteel
Relationshipb/wC%age&mechanical
propertiesofsteel

Cooling curve for pure iron

Definition of structures
Variousphasesthatappearonthe
Iron-Carbon equilibriumphase
diagramareasunder:
•Austenite
•Ferrite
•Pearlite
•Cementite
•Martensite*
•Ledeburite

Unit Cells of Various Metals
FIGURE-Theunitcellfor(a)austentite,(b)ferrite,and(c)martensite.
Theeffectofthepercentageofcarbon(byweight)onthelatticedimensions
formartensiteisshownin(d).Notetheinterstitialpositionofthecarbon
atomsandtheincreaseindimensioncwithincreasingcarboncontent.
Thus,theunitcellofmartensiteisintheshapeofarectangularprism.

Microstructure of different phases of steel

Definition of structures
Ferriteisknownasαsolidsolution.
Itisaninterstitialsolidsolutionofasmall
amountofcarbondissolvedinα(BCC)iron.
stableformofironbelow912deg.C
Themaximumsolubilityis0.025%Cat
723Canditdissolvesonly0.008%Cat
roomtemperature.
Itisthesofteststructurethatappearsonthe
diagram.

Definition of structures
Ferrite
Averagepropertiesare:
Tensilestrength=40,000psi;
Elongation =40%in2in;
Hardness >RockwellC0or
>RockwellB90

Definition of structures
Pearliteistheeutectoidmixture
containing0.80%Candis
formedat723°Converyslow
cooling.
Itisaveryfineplatelikeor
lamellarmixtureofferriteand
cementite.
Thewhiteferriticbackgroundor
matrixcontainsthinplatesof
cementite(dark).

Definition of structures
Pearlite
Averagepropertiesare:
Tensilestrength=120,000psi;
Elongation =20%in2in.;
Hardness =RockwellC20,RockwellB
95-100,orBHN250-300.

Definition of structures
Austeniteisaninterstitialsolidsolutionof
Carbondissolvedin(F.C.C.)iron.
Maximumsolubilityis2.0%Cat1130°C.
Highformability,mostofheattreatments
beginwiththissinglephase.
Itisnormallynotstableatroom
temperature.But,undercertainconditionsit
ispossibletoobtainausteniteatroom
temperature.

Definition of structures
Austenite
Averagepropertiesare:
Tensilestrength=150,000psi;
Elongation =10percentin2in.;
Hardness =RockwellC40,
approx;and
toughness =high

Definition of structures
Cementiteorironcarbide,isveryhard,
brittleintermetalliccompoundofiron&
carbon,asFe
3C,contains6.67%C.
Itisthehardeststructurethatappearsonthe
diagram,exactmeltingpointunknown.
Itscrystalstructureisorthorhombic.
Itishas
lowtensilestrength(approx.5,000psi),
but
highcompressivestrength.

Definition of structures
Ledeburiteistheeutectic
mixtureofausteniteand
cementite.
Itcontains4.3percentCandis
formedat1130°C.

Definition of structures
Martensite-a super-saturated solid solution of
carbon in ferrite.
It is formed when steel is cooled so rapidly that
the change from austenite to pearlite is
suppressed.
The interstitial carbon atoms distort the BCC
ferrite into a BC-tetragonal structure (BCT).;
responsible for the hardness of quenched steel

The Iron-Iron Carbide Diagram
Amapofthetemperatureatwhichdifferent
phasechangesoccuronveryslowheating
andcoolinginrelationtoCarbon,iscalled
Iron-CarbonDiagram.
Iron-Carbondiagramshows
thetypeofalloysformedunderveryslow
cooling,
properheat-treatmenttemperatureand
howthepropertiesofsteelsandcastirons
canberadicallychangedbyheat-treatment.

Various Features of Fe-C diagram
Peritectic L + d= 
Eutectic L =  + Fe
3C
Eutectoid = a+ Fe
3C
Phases present
L
Reactions
d
BCC structure
Paramagnetic
austenite
FCC structure
Non-magnetic
ductile
aferrite
BCC structure
Ferromagnetic
Fairly ductile
Fe
3Ccementite
Orthorhombic
Hard
brittle
Max. solubility of C in ferrite=0.022%
Max. solubility of C in austenite=2.11%

Three Phase Reactions
Peritectic, at 1490 deg.C, with low wt% C
alloys (almost no engineering importance).
Eutectic, at 1130 deg.C, with 4.3wt% C,
alloys called cast irons.
Eutectoid, at 723 deg.C with eutectoid
composition of 0.8wt% C, two-phase mixture
(ferrite & cementite). They are steels.

How to read the Fe-C phase diagram
Ferrite
Austenite
Steel Cast iron
Pearlite
Pearlite and
Cementine
Pearlite and
Carbide
Eutectic
eutectoid

The Iron-Iron Carbide Diagram
Thediagramshowsthreehorizontallineswhich
indicateisothermalreactions(oncooling/
heating):
Firsthorizontallineisat1490°C,whereperitectic
reactiontakesplace:
Liquid+d↔austenite
Secondhorizontallineisat1130°C,where
eutecticreactiontakesplace:
liquid↔austenite+cementite
Thirdhorizontallineisat723°C,whereeutectoid
reactiontakesplace:
austenite↔pearlite(mixtureofferrite&
cementite)

Delta region of Fe-Fe carbide diagram
Liquid + d↔ austenite

Ferrite region of
Fe-Fe Carbide
diagram

Simplified Iron-Carbon phase diagram
austenite ↔ pearlite (mixture of ferrite & cementite)

The Austenite to ferrite / cementite transformation in
relation to Fe-C diagram

The Austenite to ferrite / cementite
transformation in relation to Fe-C diagram
Inordertounderstandthetransformation
processes,considerasteeloftheeutectoid
composition.0.8%carbon,beingslowcooled
alonglinex-x‘.
Attheuppertemperatures,onlyausteniteis
present,withthe0.8%carbonbeingdissolved
insolidsolutionwithintheFCC.Whenthesteel
coolsthrough723°C,severalchangesoccur
simultaneously.

The Austenite to ferrite / cementite
transformation in relation to Fe-C diagram
Theironwantstochangecrystal
structurefromtheFCCaustenitetothe
BCCferrite,buttheferritecanonly
contain0.02%carboninsolidsolution.
Theexcesscarbonisrejectedand
formsthecarbon-richintermetallic
knownascementite.

Pearlitic structure
Thenetreactionatthe
eutectoidistheformation
ofpearliticstructure.
Sincethechemical
separationoccursentirely
withincrystallinesolids,
theresultantstructureisa
finemixtureofferriteand
cementite.

Schematic picture of the formation and
growth of pearlite
Ferrite
Cementite
Austenite
boundary

Nucleation & growth of pearlite

The Austenite to ferrite / cementite transformation in
relation to Fe-C diagram
Hypo-eutectoidsteels:Steelshavinglessthan
0.8%carbonarecalledhypo-eutectoidsteels
(hypomeans"lessthan").
Considerthecoolingofatypicalhypo-eutectoid
alloyalongliney-y‘.
Athightemperaturesthematerialisentirely
austenite.
Uponcoolingitentersaregionwherethestable
phasesareferriteandaustenite.
Thelow-carbonferritenucleatesandgrows,
leavingtheremainingaustenitericherincarbon.

The Austenite to ferrite / cementite
transformation in relation to Fe-C diagram
Hypo-eutectoid steels-
At 723°C, the remaining
austenite will have assumed
the eutectoid composition
(0.8% carbon), and further
cooling transforms it to
pearlite.
The resulting structure, is a
mixture of primary or pro-
eutectoid ferrite(ferrite that
forms before the eutectoid
reaction) and regions of
pearlite.

The Austenite to ferrite / cementite transformation in
relation to Fe-C diagram
Hyper-eutectoidsteels(hypermeans
"greaterthan")arethosethatcontainmore
thantheeutectoidamountofCarbon.
Whensuchasteelcools,asalonglinez-z',
theprocessissimilartothehypo-eutectoid
steel,exceptthattheprimaryorpro-eutectoid
phaseisnowcementiteinsteadofferrite.

The Austenite to ferrite / cementite transformation in
relation to Fe-C diagram
Asthecarbon-richphasenucleatesandgrows,
theremainingaustenitedecreasesincarbon
content,againreachingtheeutectoid
compositionat723°C.
Thisaustenitetransformstopearliteuponslow
coolingthroughtheeutectoidtemperature.
Theresultingstructureconsistsofprimary
cementiteandpearlite.
Thecontinuousnetworkofprimarycementite
willcausethematerialtobeextremelybrittle.

The Austenite to ferrite / cementite transformation in
relation to Fe-C diagram
Hypo-eutectoid steel showing primary cementite along grain
boundaries pearlite

The Austenite to ferrite / cementite
transformation in relation to Fe-C diagram
Itshouldbenotedthatthetransitions
asdiscussed,areforequilibrium
conditions,asaresultofslowcooling.
Uponslowheatingthetransitionswill
occurinthereversemanner.

The Austenite to ferrite / cementite transformation in
relation to Fe-C diagram
Whenthealloysarecooledrapidly,entirely
differentresultsareobtained,sincesufficient
timemaynotbeprovidedforthenormalphase
reactionstooccur.
Inthesecases,theequilibriumphasediagram
isnolongeravalidtoolforengineering
analysis.
Rapid-coolprocessesareimportantintheheat
treatmentofsteelsandothermetals(tobe
discussedlaterinH/Tofsteels).

Principal phases of steel and their
Characteristics
Phase
Crystal
structure
Characteristics
Ferrite BCC Soft, ductile, magnetic
Austenite FCC
Soft, moderate
strength, non-
magnetic
Cementite
Compound of Iron
& Carbon Fe
3C
Hard &brittle

24
• Teutectoidchanges: • Ceutectoidchanges:
Alloying Steel with more Elements

Cast Irons
-Iron-Carbon alloys of
2.11%C or more are cast
irons.
-Typical composition: 2.0-
4.0%C,0.5-3.0% Si, less
than 1.0% Mn and less
than 0.2% S.
-Si-substitutes partially for C
and promotes formation of
graphite as the carbon
rich component instead
Fe
3C.

Applications
It is used tailor properties of steel and to heat
treat them.
It is also used for comparison of crystal
structures for metallurgists in case of rupture
or fatigue

Conclusion

Thanks
Tags