Isomorphic graph

7,991 views 17 slides Mar 17, 2018
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

graph


Slide Content

presented BY: UMAIR KHAN

T opics i n di s cuss i on      I n t r oduction t o Isomorphism I s omorphic g r aphs Cut s e t Labe l ed g r aphs H a mil t onian ci r cuit

• I s omorp h ism Isomorphism is a very general concept that appears in several areas of mathematics. The word derives from the Greek iso, meaning "equal," and morphosis, meaning "to form" or "to shape.“

I s omorph i c g r aphs • I s omorp h ism – T w o g r aphs a r e isomorphic, if th e y a r e s tru c tu r ally id e n ti c al, Whi c h m e a n s th a t they c or r espond s tru c tu r al de t ails. F orm a l v e r t e x- t o- v e r t e x and e d g e – t o- e d g e c or r espond e n c e is c all e d is o morphism. in all – • T w o g r a p h a r e said t o be isomorphic if    They They They h a v e h a v e h a v e t h e sa m e no of v e r tic e s. t h e sa m e numb e r of ed g es. a n e qu a l nu m b e r of v e r tic e s with a gi v en d e g r e e .

V er i f y i ng Isom o rp h ic Graph V ert i ces( A ) : a b c d e V ert i ces(B ) : Deg r ee of v ert i ces: E dge s ( A ): E dge s ( B ): q 2 p 3 r 3 s 3 t 1 e1 e’1 e2 e’4 e3 e’3 e4 e’2 e5 e’5 e6 e’6 G r aph B G r aph A

E x amples f or n o n i s om o rphic g r aphs : i) u 2 v 2 u 3 u 1 v 1 v 3 u 4 v 4 u 5 1 st 2 nd . g r aph has mo r e ed g es than

2 nd 1 st ii) g r aph has v er t e x of d e g r ee 1 , g r aph doesn't. u 2 v 2 u 3 v 3 u 1 v 1 u 4 v 4 u 5 v 5

1 st iii) g r aph has 2 deg r ee 1 v erti c es, 4 deg r ee 2 v er t e x and 2 deg r ee 3 v erti c es. 2 nd g r aph has 3 deg r ee 1 v erti c es, 3 deg r ee 2 v er t e x and 3 deg r ee 3 v erti c es. u 1 u 2 u 3 u 4 u 5 u 6 v 1 v 2 v 3 v 4 v 5 v 6 u 7 u 8 u 9 v 7 v 8 v 9

Cut set Cut s e t is a c onnec t ed g r aph G is the s e t of e d g es who s e r em o v al f r om G le av es G dis c o n nec t ed, P r o vi d ed the r em o v al of no p r oper se b s e t of th e se ed g es dis c onnects the g r aph G. Cut s e t a r e also c all e d p r oper cut s e t or minimal cut s e t. • •

• If o n e c an r em o v e a v er t e x (and all incide n t ed g es) and p r oduce a g r aph with mo r e c omp o ne n ts, the v er t e x is c all e d a c u t ver t e x or art i c u lati o n p oi n t . Simil a rly if r e m o v al of an ed g e c r e a t es mo r e c omp o ne n ts the ed g e is c alled a c u t edge or bridge . The cu t- set of the cut is the s e t of e d g es who s e e nd poi n ts a r e in di f f e r e n t su b s e ts o f the partition. E d g es a r e said t o be crossi n g the cut if th e y a r e in its cu t - s e t. • •

Labe l ed g r aph A g r aph G is c all e d a lab e led g r aph if its ed g es and / or v erti c es a r e assi g ned s o me d at a. • • A g r aph lab e ling is the assi g nm e n t of labels, t r aditionally r ep r es e nt ed b y i nt e g e r s, t o t he e d g es or v erti c es, or b o th, g r aph. of a • If the e d g e e is as s igned a non - ne g a ti v e numb e r then it is c all e d the w eig h t or len g th of the ed g e e .

• V er t e x - labe l ed g r aph • If all the v erti c es in a g r aph a r e gi v en a lab e l then it is v er t e x - lab e led g r aph • E d g e - labe l ed g r aph • If all the E d g es in a g r aph E d g e - lab e led g r aph a r e gi v en a lab e l then it is

Hami l t onian ci r cuit H a mil t onian p a ths and ci r cuits a r e na m ed a f t er the m a the m a tici a n , William R o w an H a mil t on. A H a mil t onian ci r cuit in a c onnec t ed g r aph is d e fined as a closed w alk th a t t r a v e r ses e v e r y v er t e x of G e x actly o n c e . also c all e d H a mil t onian c y cl e s. • • • It is c all e d as ci r cuit if it includes e v e r y v er t e x of G. If a n y ed g e r e m o v ed th e n it is Hamil t onian p a t h . is Ham i l t onian c i r c u it: { v1,v3,v4,v2 , v6 , v5 , v1} The ab o v e is a Ham i l t onian ci r c u it as each a n d e v e r y v er t e x is t ra v e r sed on c e A n d c omp l e t es the c i r c u it b y ending in s t art i ng poi n t.

• A Hamil t o n ian p a th o r t r ac e able p a th is a p a th th a t vi s its ea c h v er t e x e x a c tly once. Its also c all e d as a t r a c e a ble g r aph. a b H ami l t onian p a th d c • A g r aph is Hamil t onian - c onnec t ed if f or e v e r y pair o f v erti c es the r e is a H a mil t onian p a th b e t w e e n the t w o v erti c es.

any Question

Tha n k you
Tags