529 References.
Matteoli, G.: Gut CD103
+
dendritic cells express indoleamine 2,3-dioxygen-
ase which influences T regulatory/T effector cell balance and oral tolerance
induction. Gut 2010, 59:595–604.
Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., Ho, A.W., See,
P., Shin, A., Wasan, P.S., et al.: IRF4 transcription factor-dependent CD11b
+
den-
dritic cells in human and mouse control mucosal IL-17 cytokine responses.
Immunity 2013, 38:970–983.
Scott, C.L., Bain, C.C., Wright, P.B., Schien, D., Kotarsky, K., Persson, E.K., Luda,
K., Guilliams, M., Lambrecht, B.N., Agace, W.W., et al.: CCR2
+
CD103
-
intestinal
dendritic cells develop from DC-committed precursors and induce interleu-
kin-17 production by T cells. Mucosal Immunol. 2015, 8:327–239.
Travis, M.A., Reizis, B., Melton, A.C., Masteller, E., Tang, Q., Proctor, J.M.,
Wang, Y., Bernstein, X., Huang, X., Reichardt, L.F., et al.: Loss of integrin α
V
β
8
on dendritic cells causes autoimmunity and colitis in mice. Nature 2007,
449:361–365.
Vicente-Suarez, I., Larange, A., Reardon, C., Matho, M., Feau, S., Chodaczek,
G., Park, Y., Obata, Y., Gold, R., Wang-Zhu, Y., et al.: Unique lamina propria stro-
mal cells imprint the functional phenotype of mucosal dendritic cells. Mucosal
Immunol. 2015, 8:141–151.
Watchmaker, P.B., Lahl, K., Lee, M., Baumjohann, D., Morton, J., Kim, S.J.,
Zeng, R., Dent, A., Ansel, K.M., Diamond, B., et al: Comparative transcriptional
and functional profiling defines conserved programs of intestinal DC differen-
tiation in humans and mice. Nat. Immunol. 2014, 15:98–108.
12-8
Macrophages and dendritic cells have different roles in mucosal
immune responses.
Bain, C.C.,
Bravo-Blas, A., Scott, C.L., Geissmann, F., Henri, S., Malissen, B.,
Osborne, L.C., Artis, D., and Mowat, A.M.: Constant replenishment from cir-
culating monocytes maintains the macrophage pool in adult intestine. Nat.
Immunol. 2014, 15:929–937.
Guilliams, M., Lambrecht, B.N., and Hammad, H.: Division of labor between
lung dendritic cells and macrophages in the defense against pulmonary infec-
tions. Mucosal Immunol 2013, 6:464–473.
Hadis, U., Wahl, B., Schulz, O., Hardtke-Wolenski, M., Schippers, A., Wagner, N.,
Muller, W., Sparwasser, T., Forster, R., and Pabst, O.: Intestinal tolerance requires
gut homing and expansion of FoxP3
+
regulatory T cells in the lamina propria.
Immunity 2011, 34:237–246.
Mortha, A., Chudnovskiy, A., Hashimoto, D., Bogunovic, M., Spencer, S.P., Belkaid,
Y., and Merad, M.: Microbiota-dependent crosstalk between macrophages and
ILC3 promotes intestinal homeostasis. Science 2014, 343:1249288.
12-9
Antigen-presenting cells in the intestinal mucosa acquire antigen by
a variety of routes.
Farache, J.,
Zigmond, E., Shakhar, G., and Jung, S.: Contributions of den-
dritic cells and macrophages to intestinal homeostasis and immune defense.
Immunol. Cell Biol. 2013, 91:232–239.
Jang, M.H., Kweon, M.N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa,
C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P.D., et al.: Intestinal villous M cells:
an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 2004,
101:6110–6115.
Mazzini, E., Massimiliano, L., Penna, G., and Rescigno, M.: Oral tolerance can
be established via gap junction transfer of fed antigens from CX3CR1
+
mac-
rophages to CD103
+
dendritic cells. Immunity 2014, 40:248–261.
McDole, J.R., Wheeler, L.W., McDonald, K.G., Wang, B., Konjufca, V., Knoop, K.A.,
Newberry, R.D., and Miller, M.J.: Goblet cells deliver luminal antigen to CD103
+
dendritic cells in the small intestine. Nature 2012, 483:345–349.
Schulz, O., and Pabst, O.: Antigen sampling in the small intestine. Trends
Immunol. 2013, 34:155–161.
Yoshida, M., Claypool, S.M., Wagner, J.S., Mizoguchi, E., Mizoguchi, A.,
Roopenian, D.C., Lencer, W.I., and Blumberg, R.S.: Human neonatal Fc receptor
mediates transport of IgG into luminal secretions for delivery of antigens to
mucosal dendritic cells. Immunity 2004, 20:769–783.
12-10
Secretory IgA is the class of antibody associated with the mucosal
immune system.
Fritz,
J.H., Rojas, O.L., Simard, N., McCarthy, D.D., Hapfelmeier, S., Rubino, S.,
Robertson, S.J., Larijani, M., Gosselin, J., Ivanov, II, et al.: Acquisition of a multi-
functional IgA
+
plasma cell phenotype in the gut. Nature 2012, 481:199–203.
Kawamoto, S., Maruya, M., Kato, L.M., Suda, W., Atarashi, K., Doi, Y., Tsutsui,
Y., Qin, H., Honda, K., Okada, T., et al: Foxp3 T cells regulate immunoglobulin
A selection and facilitate diversification of bacterial species responsible for
immune homeostasis. Immunity 2014, 41:152–165.
Lin, M., Du, L., Brandtzaeg, P., and Pan-Hammarstrom, Q.: IgA subclass switch
recombination in human mucosal and systemic immune compartments.
Mucosal Immunol. 2014, 7:511–520.
Woof, J.M., and Russell, M.W.: Structure and function relationships in IgA.
Mucosal Immunol. 2011, 4:590–597.
12-11
T-independent processes can contribute to IgA production in some
species
Barone, F.,
Vossenkamper, A., Boursier, L., Su, W., Watson, A., John, S., Dunn-
Walters, D.K., Fields, P., Wijetilleka, S., Edgeworth, J.D., et al: IgA-producing
plasma cells originate from germinal centers that are induced by B-cell recep-
tor engagement in humans. Gastroenterology 2011, 140:947–956.
Fagarasan, S., Kawamoto, S., Kanagawa, O., and Suzuki, K.: Adaptive immune
regulation in the gut: T cell-dependent and T cell-independent IgA synthesis.
Annu. Rev. Immunol. 2010, 28:243–273.
Lin, M., Du, L., Brandtzaeg, P., and Pan-Hammarstrom, Q.: IgA subclass switch
recombination in human mucosal and systemic immune compartments.
Mucosal Immunol. 2014, 7:511–520.
Tezuka, H., Abe, Y., Asano, J., Sato, T., Liu, J., Iwata, M., and Ohteki, T.: Prominent
role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induc-
tion. Immunity 2011, 34:247–257.
12-12
IgA deficiency is relatively common in humans but may be
compensated for by secretory IgM.
Karlsson,
M.R., Johansen, F.E., Kahu, H., Macpherson, A., and Brandtzaeg, P.:
Hypersensitivity and oral tolerance in the absence of a secretory immune sys-
tem. Allergy 2010, 65:561–570.
Yel, L.: Selective IgA deficiency. J. Clin. Immunol. 2010, 30:10–16.
12-13
The intestinal lamina propria contains antigen-experienced T cells and populations of unusual innate lymphoid cells.
Buonocore, S.,
Ahern, P.P., Uhlig, H.H., Ivanov, I.I., Littman, D.R., Maloy, K.J., and
Powrie, F.: Innate lymphoid cells drive interleukin-23-dependent innate intesti-
nal pathology. Nature 2010, 464:1371–1375.
Satpathy, A.T., Briseño, C.G., Lee, J.S., Ng, D., Manieri, N.A., Kc, W., Wu, X.,
Thomas, S.R., Lee, W.L., Turkoz, M., et al.: Notch2-dependent classical dendritic
cells orchestrate intestinal immunity to attaching-and-effacing bacterial
pathogens. Nat. Immunol. 2013, 14:937–948.
Klose, C.S., Kiss, E.A., Schwierzeck, V., Ebert, K., Hoyler, T., d'Hargues, Y.,
Goppert, N., Croxford, A.L., Waisman, A., Tanriver, Y., et al: A T-bet gradient con-
trols the fate and function of CCR6–RORγt
+
innate lymphoid cells. Nature 2013,
494:261–265.
Kruglov, A.A., Grivennikov, S.I., Kuprash, D.V., Winsauer, C., Prepens, S., Seleznik,
G.M., Eberl, G., Littman, D.R., Heikenwalder, M., Tumanov, A.V., et al: Nonredundant
function of soluble LTα3 produced by innate lymphoid cells in intestinal home-
ostasis. Science 2013, 342:1243–1246.
Le Bourhis, L., Dusseaux, M., Bohineust, A., Bessoles, S., Martin, E., Premel, V.,
Core, M., Sleurs, D., Serriari, N.E., and Treiner, E.: MAIT cells detect and efficiently
lyse bacterially-infected epithelial cells. PLoS Pathog. 2013, 9:e1003681.
Spits, H., and Cupedo, T.: Innate lymphoid cells: emerging insights in
development, lineage relationships, and function. Annu. Rev. Immunol. 2012,
30:647–675.
IMM9 chapter 12.indd 529 24/02/2016 15:51