K-means klasterlash algoritmi_selecting_N_custers.pptx

NosirbekAbdurazakov 11 views 8 slides Sep 22, 2025
Slide 1
Slide 1 of 8
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8

About This Presentation

This presentation is short about K-means clustering


Slide Content

K-means klasterlash algoritmi

Namunalarni K ta klasterga ajratish algoritmi K ta klasterga ajratishda klaster markazigacha bulgan masofalar yigindisi eng kichik bo’lishiga erishga harakat qiladi . Buning uchun har bir namuna va sentroid deb ataluvchi klaster markazi orasidagi Yevklid masofasi hisoblanadi . Dastlab k ta klaster markazi ixtiyoriy tanlanadi .

Klaster markazlarini yangilash Bir klasterga mansub deb topilgan nuqtalar ( namunalar ) kordinatalarining o’rtachasi hisoblanadi va ushbu yangi nuqta klastening yangi markazi deb tanlanadi . Ushbu jarayon o’zgarmas markaz nuqtasi topilgunga qadar takrorlanadi . Klasterlash bajarilgandan so’ng , har bir klasterni nomlash yani unga label biriktirish mumkin bo’ladi . Misol uchun onlayn savdoda haridorlarni turlarga ajratish , fazodagi yulduzlar turkumi va hakazo ..

Klasterlar sonini belgilash . 1. ixtiyoriy belgilash . 2. Elbow Metodi yordamida eng maqbul K qiymatini toppish. Bu usulda K ning qiymati 1 dan N gacha seeking o’zgartirib boriladi va har bir klister Ichida klister markazidan namunagacha bo’lgan masofalar kvadrati yig’indisi eng minimum bo’lgunga qadar K ning qiymati ortirib boriladi . Kning qiymati ortgan sari klasterlar soni oshib boradi va klister markazidan namunagacha bulgan masofalarning kvadratik yigindisi kamayib boradi .

Klasterlar sonini belgilash . K ning soni ortishi bilan kamayishlar miqdori pasayib boradi va k ni yana orttirishning ahamiyati bo’lmay qoladi . Ushbu nuqta Elbow ( chig’anoq ) nuqtasi deb atalib u optimal K qiymatini ko’rsatadi .

Inersiya va buzilish koeffitsenti Inersiya - har bir namunadan unga eng yaqin klister markazigacha bo’lgan masofa kvadrati yig’indisini anglatadi . Inersiya ko’rsatgichining kichik bo’lishi yaxshi hisoblanadi . Buzilish koeffitsenti klister markazi va namunalar orasidagi o’rtacha kvadratik masofa bo’lib , u klasterning namunalarni qay darajada aniq akjratayotganligini anglatadi . kichik qiymat yaxshi ko’rsatgich hisoblanadi .

Ushbu dataset uchun k means klasterlshni turli k qiymatlari uchun bajarish . Kagglega qarang !

Foydalanilgan manbalar : https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/ https://www.geeksforgeeks.org/k-means-clustering-introduction/ https://www.datacamp.com/tutorial/k-means-clustering-python https://openagriculturejournal.com/VOLUME/18/ELOCATOR/e18743315291367/FULLTEXT/