Kinematics and dynamics of water Kinematics and dynamics of waterKinematics Dynamics.pptx

Odoy2 14 views 103 slides Aug 14, 2024
Slide 1
Slide 1 of 103
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103

About This Presentation

Kinematics and dynamics of water

Kinematics and dynamics of water
Kinematics and dynamics of water

Kinematics and dynamics of water
Kinematics and dynamics of water

Kinematics and dynamics of water
Kinematics and dynamics of water

Kinematics and dynamics of water
Kinematics and dynamics of water...


Slide Content

Kinematics and Dynamics Prof. Dr. Andreas Malcherek

A course in kinematics and dynamics This course in Mechanics is an integrated approch to kinematics,and dynamics . Based on the fundamental skill to solve ordinary differential equations (ODE) in MATLAB (will be shown in the course ) the fundamental equations of kinematice will be solved to follow the trajectory of a particle . Then the fundamental equations of dynamics will be solved to understand the forces of gravity , friction and elasticity . The next part of the course is dedicated to the ODE‘s describing rotation dynamics in pumps and turbines . Finally we will have a look on relativistic dynamics to get an understanding for the origin of magnetism .

Schedule: Kinematics and dynamics Foundation of kinematics Friction forces Newtonian law of motion Hookes‘s law and elasticty Center of mass Couple of forces Rotation kinematics and dynamics Angular momentum balance Moment of inertia Dynamics of a shaft in pumps and turbines Relativistic dynamics for Electrodynamics

Foundation of kinematics Prof. Dr.- Ing . Andreas Malcherek

The experiment

Trajektories or pathways of particles

Plot of a trajectory 7 t=[0:0.1:20]; x=0.1* t+cos (t); y=sin(t); plot( x,y )

Outflow trajectories   is unknown , but:

Definition of velocity 9 u   v   w  

Numerical Solution       function ParticleKinematics x0=0; y0=0 ; z0=0 ; dt =[0 10 ]; [T,F] = ode45(@ RHS,dt ,[x0 y0 z0]); x=F(:,1 ); y=F (:,2 ); z=F (:,3 ); plot ( T,x ) function dfdt = RHS( t,f ) x=f(1); y=f(2); z=f(3); u=2 ; v=0; w=0; dxdt =u ; dydt =v ; dzdt =w; dfdt = [ dxdt;dydt;dzdt ]; end end

The xt -diagram  

Acceleration Velocities can change . Change of velocity per time is acceleration . Brake is negative acceleration u   v   w        

Kinematics on earth       =0   =0   =-g   g = 9.81 m/s²

Horizontal motion   =0      

Vertical motion            

The trajectory z(x)    

Torricelli‘s law (1644) In general :

The program function ParticleKinematics x0=0; y0=0; z0=0; dt =[0 10 ]; [T,F] = ode45(@ RHS,dt ,[x0 y0 z0]); x=F(:,1 ); y=F (:,2 ); z=F (:,3 ); plot ( T,x ) function dfdt = RHS( t,f ) x=f(1); y=f(2); z=f(3); u=2; v=0; w=0; dxdt =u; dydt =v; dzdt =w; dfdt = [ dxdt;dydt;dzdt ]; end end Please change for yourself

Friction forces Prof. Dr.. Andreas Malcherek

20 Linear friction

21 Friction and gravitation

Quadratic friction

1D Analytical solution

Where is the body ? Kinematics and dynamics

Programm function ballistics_linearfriction g=9.81; vecg =[0; -g]; k=2 ; vecx =[0; 0] ; vecv0=[10; 10 ]; [T,Y] = ode23(@RHS,[0 2],[ vecx vecv0 ]); plot (Y(:,1),Y(:,2),'LineWidth',2,'Color',[0 0 0]) ylim ([0 max (1.1*Y(:,2))]) xlabel ( 'x [m]','FontWeight','bold','FontSize',14); ylabel ( 'z [m]','FontWeight','bold','FontSize',14); function dfdt = RHS( t,f ) vecv =f(3:4); dvecxdt = vecv ; dvecvdt =-k* vecv+vecg ; dfdt = [ dvecxdt;dvecvdt ]; end end

Newtonian law of motion Prof. Dr. Andreas Malcherek

27 Second Newtonian Law Is valid for obejcts with constant mass .

Newton’s gravitation law Vektorial formulation :

G ravitation force on the earth’s surface

30 Gravitation in a earth surface co-ordinate system

31 Gravitation potential

Elasticity and Hooke’ s Law Prof. Dr. Andreas Malcherek

33 Newton‘s law of motion Such a body would always be accelerated Why stays the ball on the table ?

34 Suspensions Elastic forces adapt automatically to the load Suspension forces come from contraction

35 The ball on the table Equilibrium:

36 … to pose something on the table

37 Elasticity and friction

The program function elasticMovement dt =[0 0.05]; z0=0.1; w0=0; g=9.81; L0=0 ; M=1; D=1000000; r=100; [T,F] = ode45(@ RHS,dt ,[z0 w0]); plot(T,F(:,1),'LineWidth',2,'Color',[0 0 0]) xlabel ('Zeit [s]','FontWeight','bold','FontSize',12); ylabel ('Ort z [m]','FontWeight','bold','FontSize',12); function dfdt = RHS( t,f ) z=f(1); w=f(2); dzdt =w; dwdt=-g-D/M*(z-L0)-r*abs(w)*w; dfdt =[ dzdt ; dwdt ]; end end

The result

Center of mass movement Prof. Dr. Dipl.-Phys. Andreas Malcherek

Bodies as multiparticle -systems

Center- of - mass velocity

Internal forces Assumption

The movement of the center- of - mass COM movement does not refelct all the movements of a body : Rotation is the second movement Internal forces come back in continuum mechanics and thermodynamics

Couple of forces Prof. Dr. Andreas Malcherek

46 From a point to a body

47 The couple of forces Center of mass does not move but the body rotates .

Moment of two forces Moment with respect to reference location O

Moment of a couple of forces Moment eines Kräftepaars ist unabhängig vom Bezugspunkt

50 Statics of a body

51 Dynamics of a body Um welche Achse rotiert ein Körper? Wie schnell rotiert er um diese Achse?

Kinematics and dynamics of rotation Prof. Dr.- Ing . Andreas Malcherek

Translation and Rotation: A comparison Translation Linear motion Needs a lot of space velocity force Mass Kinetic Energy Rotation Movement on circles Spatially bounded Angular velocity torque Trägheitsmoment Rotational energy

Circular motion Movement on a full cycle :

Frequency and rounds per minute

Examples n = 3000 R/min => n = 50 R/s = 50 Hz

Angular velocity and particle velocity Vektoriell:

Centrifugal acceleration Centrifugal acceleration :

Centrifugal and centripetal force Eine Kreisbewegung entsteht dann, wenn der radiale Abstand (Radius) zum Rotationszentrum sich nicht ändert. Damit muss die Summe der radialen Kräfte Null sein:

Gravitation as centripetal force

Centripetal force in a shaft Hooke‘s law : Zentripetal force

A ngular momentum balance Prof. Dr.- Ing . Andreas Malcherek

Angular momentum The amount of rotation increases with the rotating mass with increasing velocity with increasing radius

Angular momentum balance Torques acting on a body :

Moment of inertia Prof. Dr.- Ing . Andreas Malcherek

Derivation

Moment of inertia of a shaft

Rules for the moment of inertia Two disjunct bodies : Parallel movement of the axis

Rotation dynamics of a shaft Prof. Dr.- Ing . Andreas Malcherek

Dynamics of a shaft

Estimation for the rotation friction

MATLAB-Program function shaftrotation rhoW =7850; L=4; R=1; theta =1/2* rhoW * pi *L*R^4 dR =0.001; LF=1; % Length of the shaft mu =1e-2; D=2* pi *R^3/ dR *LF* mu tau=1e4; [T,N]= ode45(@RHS,[ 0 10000],0); plot (T,N ); function domegadt =RHS( t,omega ) domegadt =tau/theta-D* omega / theta ; end end

Initiation of rotation

Stationary angular velocity Inertia of momentum is not decisive for the stationary angular velocity .

Shaft dynamics in pumps and turbines

Relativistic dynamics Prof. Dr.. Andreas Malcherek

Time and space

The so-called speed of light c = 300 000 000 m/s The speed of light is just a factor which transforms a spatial length to a time intervall . It‘s value comes from the anthropogenic SI-System.

Four-dimensional vectors Notation: An index i is related to a 4 dimensional vector in time and space . A vector array is a 3 dimensional spatial vector .

The imaginary time i i = -1 The time component has to be imaginary to describe distances between events correctly .

Gradients in 4D

Laplacian in 4D The Poisson equation becomes a wave equation !

Relativistic momentum The norm of the relativistic momentum of a particle remains always constant :

Rotations in 4 dimensions The norm remains constant if

The electrodynamic potential Potential: A particle is moving in the direction where a potential A decreases :

Reminder: Four dimensional gradients

Tensor of the electromagnetic field

Electrical Potential

Electric Field

Electric Field

Magnetic Field

Magnetic Field

The energy equation

The momentum equation

Relativistic Lorentz force

Relativistic momentum equation with Lorentz force Classical equation of the movement of an electrical particle :

Movement of an Electron in an EM-Field

Analytical Solution

Frequency and Period

Movement of an Elektrons in a EM field

Movement with/without magnetic field

function ElektronInEMField c=300000e3; qe =-1.6e-19; me =9.1093837015e-31; % Elektron E0=-1e-3; E=E0*[1 0 0]; vB =0.9*c; B0=E0/ vB ; B=B0*[0 1 0]; T0=2* pi * me / qe /B0; opts = odeset ('RelTol',1e-6); [T,Y] = ode45(@ lorentz ,[0 50*T0],[0 0 0 0 0 0], opts ); plot (T/T0,[Y(:,4)/ vB ],'Color','[0 0 0]','LineWidth',2,'DisplayName','u') hold on plot (T/T0,[Y(:,5)/ vB ],'Color','[1 0 0]','LineWidth',2,'DisplayName','v') plot (T/T0,[Y(:,6)/ vB ],'Color','[0 0 1]','LineWidth',2,'DisplayName','w') function dfdt = lorentz ( t,f ) x=f(1); y=f(2); z=f(3); u=f(4); v=f(5); w=f(6); vecv =[u v w]; gamma =1/ sqrt (1-vecv* vecv '/c^2); dvdt = qe / me / gamma *( E+cross ( vecv,B )-( vecv *E')* vecv /c^2); dfdt = [ vecv (1); vecv (2); vecv (3); dvdt (1); dvdt (2); dvdt (3)]; end end The program

What is magnetism? In a 4D world time and space are ( more or less ) equivalent . Forces only turn the momentum vector in such a space . Forces are described by a 4x4 antisymmetric Tensor. Electric forces are the time component of the forces . Magnetic forces are the spatial component of the forces .