* Caùc böôùc thieát keá:
-Phaùt bieåu baøi toaùn.
-Xaùc ñònh soá bieán ngoõ vaøo vaø soá bieán ngoõ ra.
-Thaønh laäp baûng giaù trò chæ roõ moái quan heä giöõa ngoõ vaøo
vaø ngoõ ra.
-Tìm bieåu thöùc ruùt goïn cuûa töøng ngoõ ra phuï thuoäc vaøo
caùc bieán ngoõ vaøo.
-Thöïc hieän sô ñoà logic.
Ngoõ vaøo
X
n-1
… X
1
X
0
Ngoõ ra
Y
m-1
… Y
1
Y
0
0 … 0 0
1 … 1 1
NguyenTrongLuat 2
Vd: Thieát keá heä toå hôïp coù 3 ngoõ vaøo X, Y, Z; vaø 2 ngoõ ra F, G.
-Ngoõ ra F laø 1 neáu nhö 3 ngoõ vaøo coù soá bit 1 nhieàu hôn soá bit
0; ngöôïc laïi F = 0.
-Ngoõ ra G laø 1 neáu nhö giaù trò nhò phaân cuûa 3 ngoõ vaøo lôùn
hôn 1 vaø nhoû hôn 6; ngöôïc laïi G = 0.
X Y Z F G
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0
0
0
1
0
1
1
1
0
0
1
1
1
1
0
0
XY
Z
F
0
1
00011110
11
Y Z
1
1
X Z
X Y
F = X Y + Y Z + X Z
XY
Z
G
0
1
00011110
11
11
X Y X Y
G = X Y + X Y = X
Y
NguyenTrongLuat 3
F
F = X Y + Y Z + X Z G = X Y + X Y = X
Y
X
Y
Z
G
NguyenTrongLuat 4
Tr
ườ
ngh
ợ
pheätoåhôïpkhoângsöûduïngtaátcaû2
n
toåhôïpcuûangoõ
vaøo,thìtaïicaùctoåhôïpkhoângsöûduïngñoùngoõracoùgiaùtròtuøyñònh.
Vd:Thieát keá heä toå
hôïp coù ngoõ vaøo bieåu
dieãn cho 1 soá maõ BCD.
Neáu giaù trò ngoõ vaøo
nhoû hôn 3 thì ngoõ ra coù
giaù trò baèng bình
phöông giaù trò ngoõ
vaøo; ngöôïc laïi giaù trò
ngoõ ra baèng giaù trò ngoõ
vaøo tröø ñi 3.
A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
F
2
F
1
F
0
X X X
X X X
X X X
X X X
X X X
X X X
0 0 0
0 0 1
1 0 0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
F2 = A + B C D + B C D
F1 = A D + B C D + B C D
F0 = A D + B D + A B C D
NguyenTrongLuat 5
II.Boäcoäng-tröønhòphaân:
1. Boä coäng (Adder):
a. Boä coäng baùn phaàn (Half Adder –H.A):
Boä coäng baùn phaàn laø heä toå hôïp coù nhieäm vuï thöïc hieän
pheùp coäng soá hoïc x + y (x, y laø 2 bit nhò phaân ngoõ vaøo); heä
coù 2 ngoõ ra: bit toång S (Sum) vaø bit nhôù C (Carry).
x y C S
0 0
0 1
1 0
1 1
0 0
0 1
0 1
1 0
S = x y + x y = x
y
C = x y
x
y
S
C
x
y
S
C
H.A
NguyenTrongLuat 6
b. Boä coäng toaøn phaàn (Full Adder –F.A):
Boäcoängtoaønphaànth
ự
chi
ệ
npheùpcoängsoáhoïc3bitx+y+z
(zbieåudieãnchobitnhôùtöøv
ị
trícoùtroïngsoánhoûhôngôûitôùi)
x
y
S
C
F.A
z
x y zC S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1
xy
z
S
0
1
00011110
1
1
1
1
S = x y z + x y z + x y z + x y z
xy
z
C
0
1
00011110
11 1
1
C = x y + x z + y z
NguyenTrongLuat 7
S = x y z + x y z + x y z + x y z
= z (x y + x y) + z (x y + x y)
= z (x
y) + z (x
y)
S = z
(x
y)
C = x y + x z + y z
= x y + x y z + x y z + x y z
= x y (1 + z) + z (x y + x y)
C = x y + z (x
y)
x
y
z
S
C
NguyenTrongLuat 8
2. Boä tröø (Subtractor):
a. Boä tröø baùn phaàn (Half Subtractor –H.S):
Boä tröø baùn phaàn coù nhieäm vuï thöïc hieän pheùp tröø soá
hoïc x -y (x, y laø 2 bit nhò phaân ngoõ vaøo); heä coù 2 ngoõ ra: bit
hieäu D (Difference) vaø bit möôïn B (Borrow).
x
y
D
B
H.S
x y B D
0 0
0 1
1 0
1 1
0 0
1 1
0 1
0 0
D = x y + x y = x
y
B = x y
x
y
D
B
NguyenTrongLuat 9
b. Boä tröø toaøn phaàn (Full Subtractor –F.S):
Boätröøtoaønphaànth
ự
chi
ệ
npheùptröøsoáhoïc3bitx-y-z
(zbieåudieãnchobitmöôïntöøvítròcoùtroïngsoánhoûhôn)
x
y
D
B
F.S
z
x y zB D
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0
1 1
1 1
1 0
0 1
0 0
0 0
1 1
xy
z
D
0
1
00011110
1
1
1
1
xy
z
B
0
1
00011110
11 1
1
S = x y z + x y z + x y z + x y z
C = x y + x z + y z
S = z
(x
y)
C = x y + z (x
y)
NguyenTrongLuat 10
c. Boä coäng/tröø nhò phaân:
M0 N0M1 N1M2 N2M3 N3
C0
xy
zC
S
F.A
xy
zC
S
F.A
xy
zC
S
F.A
xy
zC
S
F.A
C1 C2 C3
S0 S1 S2 S3 C4
Pheùp toaùnC
0
y
i
0 N
i
COÄNG
TRÖØ 1 N
i
T = 0:Coäng
T = 1:Tröø
Ngoõ vaøo ñieàu khieån
C
0
= T
y
i
= T
N
i
T
NguyenTrongLuat 13
Vd:Thieát keá heä chuyeån maõ töø maõ BCD thaønh maõ BCD quaù 3.
A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
W X Y Z
X X X X
X X X X
X X X X
X X X X
X X XX
X X X X
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
W = A + B (C + D)
X = B
(C + D)
Y = C
D
Z = D
A
B
C
D
W
X
Z
Y
NguyenTrongLuat 15
IV.Boägiaûimaõ(DECODER):
1. Giôùi thieäu:
-Boä giaûi maõ laø heä chuyeån maõ coù nhieäm vuï chuyeån töø maõ nhò
phaân cô baûn n bitôû ngoõ vaøo thaønh maõ nhò phaân 1 trong môû
ngoõ ra.
Maõ
1 trong m
X
0
X
1
X
n-1
Maõ
nhò phaân
Y
0
Y
1
Y
m-1
m = 2
n
-Coù2daïng:ngoõratíchcöïccao(möùc1)vaøngoõratíchcöïc
thaáp(möùc0).
-V
ớ
igiaùtr
ị
ic
ủ
at
ổ
h
ợ
pnh
ị
phaân
ở
ngoõvaøo,thìngoõraY
i
s
ẽ
tíchc
ự
cvaøcaùcngoõracoønl
ạ
is
ẽ
khoângtíchc
ự
c.
NguyenTrongLuat 16
a. Boä giaûi maõ ngoõ ra tích cöïc cao:
X
0
(LSB)
X
1
Y
0
Y
1
Y
2
Y
3
X
1
X
0
Y
3
Y
2
Y
1
Y
0
0 0
0 1
1 0
1 1
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
Y
0
= X
1
X
0
= m
0
Y
1
= X
1
X
0
= m
1
Y
2
= X
1
X
0
= m
2
Y
3
= X
1
X
0
= m
3
X
0
X
1
Y
0
Y
1
Y
2
Y
3
Ngoõ ra:Y
i
= m
i
(i = 0, 1, .., 2
n
-1)
NguyenTrongLuat 17
b. Boä giaûi maõ ngoõ ra tích cöïc thaáp:
X
1
X
0
Y
3
Y
2
Y
1
Y
0
0 0
0 1
1 0
1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
X
0
X
1
Ngoõ ra:Y
i
= M
i
(i = 0, 1, .., 2
n
-1)
X
0
(LSB)
X
1
Y
0
Y
1
Y
2
Y
3
Y
0
= X
1
+X
0
= M
0
= m
0
Y
1
= X
1
+X
0
= M
1
= m
1
Y
2
= X
1
+X
0
= M
2
= m
2
Y
3
= X
1
+X
0
= M
3
= m
3
Y
0
Y
1
Y
2
Y
3
NguyenTrongLuat 18
c. Boä giaûi maõ coù ngoõ vaøo cho pheùp:
-Ngoaøi caùc ngoõ vaøo döõ lieäu, boä giaûi maõ coù theå coù 1 hay
nhieàu ngoõ vaøo cho pheùp.
-Khi caùc ngoõ vaøo cho pheùp ôû traïng thaùi tích cöïc thì maïch
giaûi maõ môùi ñöôïc hoaït ñoäng. Ngöôïc laïi, maïch giaûi maõ seõ khoâng
hoaït ñoäng; khi ñoù caùc ngoõ ra ñeàu ôû traïng thaùi khoâng tích cöïc.
Y
0
Y
1
Y
2
Y
3
X
0
(LSB)
X
1
EN
EN X
1
X
0
Y
3
Y
2
Y
1
Y
0
0 X X
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
X
0
X
1
Y
0
Y
1
Y
2
Y
3
EN
NguyenTrongLuat 19
2. IC giaûi maõ:
a. IC 74139:goàm 2 boä giaûi maõ 2 sang 4 ngoõ ra tích cöïc thaáp
1Y
0
1Y
1
1Y
2
1Y
3
1A
(LSB)
1B
1G
2Y
0
2Y
1
2Y
2
2Y
3
2A
(LSB)
2B
2G
1
2
3
15
14
13
4
5
6
7
12
11
10
9
G B AY
3
Y
2
Y
1
Y
0
1 X X
0 0 0
0 0 1
0 1 0
0 1 1
1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
NguyenTrongLuat 20
b. IC 74138:boä giaûi maõ 3 sang 8 ngoõ ra tích cöïc thaáp
Y
0
Y
1
Y
2
Y
3
A
(LSB)
B
C
Y
4
Y
5
Y
6
Y
7
G1
G2A
G2B
1
2
3
4
6
5
9
12
11
10
7
15
14
13
G
1
G
2A
G
2B
CB A Y
7
Y
6
Y
5
Y
4
Y
3
Y
2
Y
1
Y
0
0 X X X X X
X 1 X X X X
X X 1 X X X
1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1
NguyenTrongLuat 21
3. Söû duïng boä giaûi maõ thöïc hieän haøm Boole:
Ngoõ ra cuûa boä giaûi maõ laø minterm (ngoõ ra tích cöïc cao)
hoaëc maxterm (ngoõ ra tích cöïc thaáp) cuûa n bieán ngoõ vaøo. Do
ñoù, ta coù theå söû duïng boä giaûi maõ thöïc hieän haøm Boole theo
daïng chính taéc.
z
y
x
0
1
0
F1 (x, y, z) =
(2, 5, 7)
= m
2
+ m
5
+ m
7
= M
2
+ M
5
+ M
7
= M
2
M
5
M
7
F2 (x, y, z) =
(0, 1, 4)
= M
0
M
1
M
4
F
1
F
2
Y
0
Y
1
Y
2
Y
3
A
(LSB)
B
C
Y
4
Y
5
Y
6
Y
7
G1
G2A
G2B
74138
NguyenTrongLuat 22
V.Boämaõhoùa(ENCODER):
1. Giôùi thieäu:
-Encoderlaøheächuyeånmaõthöïchieänhoaïtñoängngöôïclaïivôùi
decoder.Nghóalaøencodercoùmngoõvaøotheomaõnhòphaân1
trongmvaønngoõratheomaõnhòphaâncôbaûn(vôùim
≤
2
n
).
-VôùingoõvaøoI
i
ñöôïctíchcöïcthìngoõrachínhlaøtoåhôïpgiaùtrò
nhòphaânitöôngöùng.
I
0
I
1
I
2
I
3
(LSB)
Z
0
Z
1
I
3
I
2
I
1
I
0
Z
1
Z
0
0 0
0 1
1 0
1 1
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
Z
1
= I
3
+ I
2
Z
0
= I
3
+ I
1
Z
1
Z
0
I
3
I
2
I
1
NguyenTrongLuat 23
* Boä maõ hoùa coù öu tieân (Priority Encoder):
Boämaõhoùacoùöutieânlaømaïchmaõhoùasaochoneáucoùnhieàu
hôn1ngoõvaøocuøngtíchcöïcthìngoõraseõlaøgiaùtrònhòphaân
cuûangoõvaøocoùöutieâncaonhaát.
I
0
I
1
I
2
I
3
(LSB)
Z
0
Z
1
V
I
3
I
2
I
1
I
0
Z
1
Z
0
V
X X 0
0 0 1
0 1 1
1 0 1
1 1 1
0 0 0 0
0 0 0 1
0 0 1 X
0 1 X X
1 X X X
Z
1
= I
3
+ I
2
Z
0
= I
3
+ I
2
I
1
V = I
3
+ I
2
+ I
1
+ I
0
I
3
I
2
I
1
I
0
Z
1
Z
0
V
Thöù töï öu tieân:I
3
I
2
I
1
I
0
NguyenTrongLuat 24
2.ICmaõhoùaöutieân8
3(74148):
EI I
7
I
6
I
5
I
4
I
3
I
2
I
1
I
0
A
2
A
1
A
0
GS EO
1 X X X X X X X X
0 0 X X X X X X X
0 1 0 X X X X X X
0 1 1 0 X X X X X
0 1 1 1 0 X X X X
0 1 1 1 1 0 X X X
0 1 1 1 1 1 0 X X
0 1 1 1 1 1 1 0 X
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1
1 1 1 1 1
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1
1 1 1 1 0
EI
I
7
I
6
I
5
I
4
I
3
I
2
I
1
I
0
1
5
3
12
14
9
A
2
A
1
(LSB)
A
0
GS
EO
7
6
15
4
2
13
11
10
NguyenTrongLuat 25
VI.Boädoànkeânh(Multiplexer-MUX):
1. Giôùi thieäu:
-MUX 2
n
1 laø heä toå hôïp coù nhi
ề
u ngoõ vaøonhöng chæ coù
1 ngoõ ra. Ngoõ vaøo goàm 2 nhoùm: mngoõ vaøo döõ lieäu (data input)
vaø nngoõ vaøo löïa choïn (select input).
-Vôùi 1 giaù trò icuûa toå hôïp nhò phaân caùc ngoõ vaøo löïa choïn,
ngoõ vaøo döõ lieäu D
i
seõ ñöôïc choïn ñöa ñeán ngoõ ra. (m = 2
n
)
D
0
D
1
:
D
m-1
S
0
(LSB)
S
1
:
S
n-1
Y
Ngoõ vaøo döõ lieäu
(Data Input)
Ngoõ vaøo löïa choïn
(Select Input)
NguyenTrongLuat 26
* Boä MUX 4
1:
D
0
D
1
D
2
D
3
S
0
(LSB)
S
1
Y
S
1
S
0
Y
0 0
0 1
1 0
1 1
D
0
D
1
D
2
D
3
= m
0
D
0
+ m
1
D
1
+ m
2
D
2
+ m
3
D
3
=
m
i
D
i
(i = 0, 1, 2, 3)
Y = S
1
S
0
D
0
+ S
1
S
0
D
1
+ S
1
S
0
D
2
+ S
1
S
0
D
3
S
1
S
0
D
0
D
1
D
2
D
3
Y
Toångquaùt:Y=
m
i
D
i
(vôùii=0,1,..,2
n
-1)
NguyenTrongLuat 27
2. IC doàn keânh:
a. 74LS153:goàm 2 boä MUX 4
1
1G
1C
0
1C
1
1C
2
1C
3
A
(LSB)
B
1Y
2G
2C
0
2C
1
2C
2
2C
3
2Y
14
15
10
11
12
13
2
1
6
5
4
3
7
9
G BA Y
1 X X
0 0 0
0 0 1
0 1 0
0 1 1
0
C
0
C
1
C
2
C
3
NguyenTrongLuat 28
b. 74151:boä MUX 8
1
EN
A
(LSB)
B
C
YD
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
Y
15
14
13
12
9
4
3
2
1
5
6
11
10
7
EN C BAY
1 X X X
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
0
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
NguyenTrongLuat 29
3. Söû duïng boä MUX thöïc hieän haøm Boole:
a.BoäMUX2
n
thöïchieänhaømBoolenbieán:
EN
A
(LSB)
B
C
YD
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
Y
F(x, y, z) =
(0, 1, 4, 7)
= m
0
+ m
1
+ m
4
+ m
7
= m
0
1 + m
1
1 + m
2
0 + m
3
0
+ m
4
1 + m
5
0 + m
6
0 + m
7
1
Y =
m
i
D
i
= m
0
D
0
+ m
1
D
1
+ m
2
D
2
+ m
3
D
3
+ m
4
D
4
+ m
5
D
5
+ m
6
D
6
+ m
7
D
7
D
0
= D
1
= D
4
= D
7
= 1
D
2
= D
3
= D
5
= D
6
= 0
z
y
x
0
1
0
F
NguyenTrongLuat 30
b. Boä MUX 2
n
thöïc hieän haøm Boole n+1 bieán:
F(x, y, z) =
(0, 1, 4, 7)
= x y z+ x y z + x y z + x y z
= x y .1+ x y .0 + x y .z + x y .z
Y = m
0
D
0
+ m
1
D
1
+ m
2
D
2
+ m
3
D
3
D
0
= 1; D
1
= 0; D
2
= z; D
3
= z
1G
1C
0
1C
1
1C
2
1C
3
A
(LSB)
B
1Y
2G
2C
0
2C
1
2C
2
2C
3
2Y
y
x
0
1
0
z
F
= m
0
.1+ m
1
.0 + m
2
.z + m
3
.z
x y zF
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
1
1
0
0
1
0
0
1
D
0
= 1
D
1
= 0
D
3
= z
D
2
= z
NguyenTrongLuat 31
VII.Boäphaânkeânh(DEMUX):
1. Giôùi thieäu:
-BoäDEMUX1
2
n
coùchöùcnaêngthöïchieänhoaïtñoängngöôïc
laïivôùiboäMUX.Maïchcoù1ngoõvaøodöõlieäu,nngoõvaøolöïa
choïnvaø2
n
ngoõra.
-Vôùi 1 giaù trò icuûa toå hôïp nhò phaân caùc ngoõ vaøo löïa choïn,
ngoõ vaøo döõ lieäu Dseõ ñöôïc ñöa ñeán ngoõ ra Y
i
.
Y
0
Y
1
:
Y
m-1
S
0
(LSB)
S
1
:
S
n-1
D
Ngoõ vaøo döõ lieäu
(Data Input)
Ngoõ vaøo löïa choïn
(Select Input)
Ngoõ vaøo döõ lieäu
(Data Input) Ngoõ ra
NguyenTrongLuat 32
* Boä DEMUX 1
4:
Y
0
Y
1
Y
2
Y
3
D
S
0
(LSB)
S
1
S
1
S
0
Y
3
Y
2
Y
1
Y
0
0 0
0 1
1 0
1 1
0 0 0 D
0 0 D 0
0 D 0 0
D 0 0 0
Y
0
= S
1
S
0
D = m
0
D
Y
1
= S
1
S
0
D = m
1
D
Y
2
= S
1
S
0
D = m
2
D
Y
3
= S
1
S
0
D = m
3
D
Y
0
Y
1
Y
2
Y
3
S
1
S
0
D
NguyenTrongLuat 33
B A1G 1C1Y
0
1Y
1
1Y
2
1Y
3
2. IC phaân keânh 74LS155:goàm 2 boä phaân keânh 1
4
1Y
0
1Y
1
1Y
2
1Y
3
A
(LSB)
B
2Y
0
2Y
1
2Y
2
2Y
3
2G
2C
1
2
15
13
3
7
6
5
4
12
10
11
9
14
1G
1C
X X
X X
0 0
0 1
1 0
1 1
1 X
X 0
0 1
0 1
0 1
0 1
1 1 1 1
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
B A2G 2C2Y
0
2Y
1
2Y
2
2Y
3
X X
X X
0 0
0 1
1 0
1 1
1 X
X 1
0 0
0 0
0 0
0 0
1 1 1 1
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
NguyenTrongLuat 34
VIII.Boäsosaùnh
đ
oälôùn(Comparator):
1. Giôùi thieäu:
-Boä so saùnh laø heä toå hôïp coù nhieäm vuï so saùnh 2 soá nh
ị
phaân
khoâng daáu A vaø B (moãi soá n bit).
-Boä so saùnh coù 3 ngoõ ra (A>B), (A=B) vaø (A<B); chæ coù 1 ngoõ ra
tích cöïc theo keát quaû so saùnh.
* Boä so saùnh 3 bit:
A: A
2
A
1
A
0
B: B
2
B
1
B
0
Söû duïng bieán trung gian:
x
i
= A
i
B
i
(i = 0, 1, 2)
(A = B) = x
2
x
1
x
o
(A > B) = A
2
B
2
+ x
2
A
1
B
1
+x
2
x
1
A
0
B
0
(A < B) = A
2
B
2
+ x
2
A
1
B
1
+x
2
x
1
A
0
B
0
(A>B)
(A=B)
(A<B)
A
B
= (A=B) + (A>B)
NguyenTrongLuat 35
x
0x
1
x
2
(A=B)
B
0
A
0
B
1
A
1B
2
A
2
(A>B)
(A<B)
NguyenTrongLuat 36
2. IC so saùnh 74LS85:
3
4
9
ALTBIN
AEQBIN
AGTBIN
B
0
B
1
B
2
B
3
10
12
13
15
11
14
1
7
5
A
0
A
1
A
2
A
3
ALTBOUT
AEQBOUT
AGTBOUT 6
2
AGTBOUT = (A>B) + (A=B)AGTBIN
AEQBOUT = (A=B) AEQBIN
ALTBOUT = (A<B) + (A=B)ALTBIN
NguyenTrongLuat 37