L'Hopital's rule i

470 views 70 slides Apr 24, 2019
Slide 1
Slide 1 of 70
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70

About This Presentation

L'Hopital's Rule


Slide Content

L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate type. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x  Since lim sin(x) = 0 and lim x = 0, x  x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x  Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x  x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x  Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim sin(x) x = lim [sin(x)]' [x]' x  x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x  Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim sin(x) x = lim [sin(x)]' [x]' x  x  = lim cos(x) 1 x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x  a x  a x  a x  a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x  Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim sin(x) x = lim [sin(x)]' [x]' x  x  = lim cos(x) 1 x  = 1. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.

B. Find lim e x – 1 x x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  = 1. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  = 1. C. Find lim e x – 1 x 2 x  + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  = 1. C. Find lim e x – 1 x 2 x  + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: x  + x  + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  = 1. C. Find lim e x – 1 x 2 x  + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: lim e x – 1 x 2 = lim [e x – 1 ]' [x 2 ]' x  + x  + x  + x  + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  = 1. C. Find lim e x – 1 x 2 x  + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: lim e x – 1 x 2 = lim [e x – 1 ]' [x 2 ]' x  + = lim e x 2x x  + x  + x  + x  + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

B. Find lim e x – 1 x x  Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x  x  lim e x – 1 x = lim [e x – 1 ]' [x]' x  x  = lim e x 1 x  = 1. C. Find lim e x – 1 x 2 x  + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: lim e x – 1 x 2 = lim [e x – 1 ]' [x 2 ]' x  + = lim e x 2x x  + = ∞ . x  + x  + x  + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . 1/x sin(1/x 2 ) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . lim 1/x x  + ∞ 1/x = lim x  + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: sin(1/x 2 ) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . lim 1/x x  + ∞ 1/x = lim x  + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x  + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x  + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . lim 1/x x  + ∞ 1/x = lim x  + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x  + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x  + ∞ = lim [1/x]' [sin(1/x 2 )]' x  + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . lim 1/x x  + ∞ 1/x = lim x  + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x  + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x  + ∞ = lim [1/x]' [sin(1/x 2 )]' x  + ∞ = lim -x -2 cos(1/x 2 )(-2x -3 ) x  + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . lim 1/x x  + ∞ 1/x = lim x  + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x  + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x  + ∞ = lim [1/x]' [sin(1/x 2 )]' x  + ∞ = lim -x -2 cos(1/x 2 )(-2x -3 ) x  + ∞ = lim x 2cos(1/x 2 ) x  + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

D. Find lim 1 x(sin(1/x 2 )) x  + ∞ Put the limit in the form of . lim 1/x x  + ∞ 1/x = lim x  + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x  + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x  + ∞ = lim [1/x]' [sin(1/x 2 )]' x  + ∞ = lim -x -2 cos(1/x 2 )(-2x -3 ) x  + ∞ = lim x 2cos(1/x 2 ) x  + ∞ = ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a E. lim 2x 3x + 2 x  Example: = 0 L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a E. lim 2x 3x + 2 x  Example: = 0 = lim [2x]' [3x + 2]' x  L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a E. lim 2x 3x + 2 x  Example: = 0 = lim [2x]' [3x + 2]' x  = 2 3 . L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a E. lim 2x 3x + 2 x  Example: = 0 = lim [2x]' [3x + 2]' x  = 2 3 . are of the " ∞ " indeterminate forms. ∞ If lim f(x) = lim g(x) = ∞, then lim x  a x  a f(x) g(x) x  a L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a E. lim 2x 3x + 2 x  Example: = 0 = lim [2x]' [3x + 2]' x  = 2 3 . are of the " ∞ " indeterminate forms. L'Hopital’s Rule applies ∞ If lim f(x) = lim g(x) = ∞, then lim x  a x  a f(x) g(x) x  a in these situations also, L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x  a x  a E. lim 2x 3x + 2 x  Example: = 0 = lim [2x]' [3x + 2]' x  = 2 3 . are of the " ∞ " indeterminate forms. L'Hopital’s Rule applies ∞ If lim f(x) = lim g(x) = ∞, then lim x  a x  a f(x) g(x) x  a in these situations also, lim f(x) g(x) = lim f '(x) g'(x). x  a x  a that is L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ It’s the form. " ∞ " ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x  ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x  ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x  ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x  ∞ 6x 4x + 1 lim x  ∞ = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x  ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x  ∞ 6x 4x + 1 lim x  ∞ = use L'Hopital's Rule again L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x  ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x  ∞ 6x 4x + 1 lim x  ∞ = = use L'Hopital's Rule again [6x]' [4x + 1]' lim x  ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x  ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x  ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x  ∞ 6x 4x + 1 lim x  ∞ = = use L'Hopital's Rule again [6x]' [4x + 1]' lim x  ∞ = 6 4 L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) = 3 2

G. e x P(x) x  ∞ where p(x) is a polynomial. Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

G. e x P(x) x  ∞ where p(x) is a polynomial Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) of degree > 0 .

It’s the form. " ∞ " ∞ Hence lim x  ∞ = lim x  ∞ e x P(x) [e x ]' [P(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x  ∞ where p(x) is a polynomial Find lim of degree > 0 .

It’s the form. " ∞ " ∞ Hence lim x  ∞ = lim x  ∞ e x P(x) [e x ]' [P(x)]' = lim x  ∞ e x [P(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x  ∞ where p(x) is a polynomial Find lim of degree > 0 .

It’s the form. " ∞ " ∞ Hence lim x  ∞ = lim x  ∞ e x P(x) [e x ]' [P(x)]' = lim x  ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x  ∞ where p(x) is a polynomial Find lim of degree > 0 .

It’s the form. " ∞ " ∞ Hence lim x  ∞ = lim x  ∞ = lim x  ∞ e x K e x P(x) [e x ]' [P(x)]' = lim x  ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. Hence lim x  ∞ e x P(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x  ∞ where p(x) is a polynomial Find lim of degree > 0 .

It’s the form. " ∞ " ∞ Hence lim x  ∞ = lim x  ∞ = lim x  ∞ e x K = ∞ e x P(x) [e x ]' [P(x)]' = lim x  ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. Hence lim x  ∞ e x P(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x  ∞ where p(x) is a polynomial Find lim of degree > 0 .

It’s the form. " ∞ " ∞ Hence lim x  ∞ = lim x  ∞ = lim x  ∞ e x K We say that e x goes to ∞ faster than any polynomial. = ∞ e x P(x) [e x ]' [P(x)]' = lim x  ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. Hence lim x  ∞ e x P(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x  ∞ where p(x) is a polynomial Find lim of degree > 0 .

H. x p Ln(x) x  ∞ where p > 0. Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ where p > 0. Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ Hence lim x  ∞ = where p > 0. Find lim lim x  ∞ x p Ln(x) [x p ]' [Ln(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ Hence lim x  ∞ = where p > 0. Find lim lim x  ∞ = lim x  ∞ px p-1 x -1 x p Ln(x) [x p ]' [Ln(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ Hence lim x  ∞ = where p > 0. Find lim lim x  ∞ = lim x  ∞ px p-1 x -1 x p Ln(x) [x p ]' [Ln(x)]' = lim x  ∞ px p L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ Hence lim x  ∞ = where p > 0. Find lim lim x  ∞ = lim x  ∞ px p-1 x -1 x p Ln(x) [x p ]' [Ln(x)]' = lim x  ∞ px p = ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ Hence lim x  ∞ = where p > 0. Find lim lim x  ∞ = lim x  ∞ px p-1 x -1 We say that x p (p > 0) goes to ∞ faster than Ln(x). x p Ln(x) [x p ]' [Ln(x)]' = lim x  ∞ px p = ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

H. x p Ln(x) x  ∞ It’s the form. " ∞ " ∞ Hence lim x  ∞ = where p > 0. Find lim lim x  ∞ = lim x  ∞ px p-1 x -1 We say that x p (p > 0) goes to ∞ faster than Ln(x). x p Ln(x) [x p ]' [Ln(x)]' = lim x  ∞ px p = ∞ The ∞/∞ form is the same as ∞ * form since ∞/∞ = ∞ * ( 1/ ∞) and we may view that 1/ ∞ a s 0. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + Find lim sin(x)Ln(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as 1/sin(x) Ln(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = lim -csc(x)cot(x) 1/x x  + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = lim -csc(x)cot(x) 1/x x  + = lim x - sin(x)tan(x) x  + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = lim -csc(x)cot(x) 1/x x  + = lim x - sin(x)tan(x) x  + = x -sin(x) lim x  + tan(x) lim x  + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = lim -csc(x)cot(x) 1/x x  + = lim x - sin(x)tan(x) x  + = x -sin(x) lim x  + tan(x) lim x  + 1 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = lim -csc(x)cot(x) 1/x x  + = lim x - sin(x)tan(x) x  + = x -sin(x) lim x  + tan(x) lim x  + -1 1/sin(x) Ln(x) =

I. x  + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x  + x  + Write it as csc(x) Ln(x) csc(x) Ln(x) x  + x  + [csc(x)]' [Ln(x)]' x  + = lim -csc(x)cot(x) 1/x x  + = lim x - sin(x)tan(x) x  + = x -sin(x) lim x  + tan(x) = 0 lim x  + -1 1/sin(x) Ln(x) =