L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate type. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x Since lim sin(x) = 0 and lim x = 0, x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x x lim sin(x) x = lim [sin(x)]' [x]' x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x x lim sin(x) x = lim [sin(x)]' [x]' x x = lim cos(x) 1 x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
L'Hopital's Rule: Given lim f(x) = lim g(x) = 0, then then lim f(x) g(x) = lim f '(x) g'(x) if the limit exists, or its ± ∞ . x a x a x a x a We call this type of limit as the " 0 " indeterminate L'Hopital's rule passes the calculation of the " 0 " form to the calculation of derivatives. Example: A. Find lim sin(x) x x Since lim sin(x) = 0 and lim x = 0, use the L'Hopital's rule: x x lim sin(x) x = lim [sin(x)]' [x]' x x = lim cos(x) 1 x = 1. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) type.
B. Find lim e x – 1 x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x = 1. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x = 1. C. Find lim e x – 1 x 2 x + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x = 1. C. Find lim e x – 1 x 2 x + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: x + x + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x = 1. C. Find lim e x – 1 x 2 x + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: lim e x – 1 x 2 = lim [e x – 1 ]' [x 2 ]' x + x + x + x + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x = 1. C. Find lim e x – 1 x 2 x + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: lim e x – 1 x 2 = lim [e x – 1 ]' [x 2 ]' x + = lim e x 2x x + x + x + x + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
B. Find lim e x – 1 x x Since lim e x – 1 = 0 and lim x = 0, use the L'Hopital's rule: x x lim e x – 1 x = lim [e x – 1 ]' [x]' x x = lim e x 1 x = 1. C. Find lim e x – 1 x 2 x + Since lim e x – 1 = 0 and lim x 2 = 0, use the L'Hopital's rule: lim e x – 1 x 2 = lim [e x – 1 ]' [x 2 ]' x + = lim e x 2x x + = ∞ . x + x + x + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . 1/x sin(1/x 2 ) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . lim 1/x x + ∞ 1/x = lim x + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: sin(1/x 2 ) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . lim 1/x x + ∞ 1/x = lim x + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . lim 1/x x + ∞ 1/x = lim x + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x + ∞ = lim [1/x]' [sin(1/x 2 )]' x + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . lim 1/x x + ∞ 1/x = lim x + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x + ∞ = lim [1/x]' [sin(1/x 2 )]' x + ∞ = lim -x -2 cos(1/x 2 )(-2x -3 ) x + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . lim 1/x x + ∞ 1/x = lim x + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x + ∞ = lim [1/x]' [sin(1/x 2 )]' x + ∞ = lim -x -2 cos(1/x 2 )(-2x -3 ) x + ∞ = lim x 2cos(1/x 2 ) x + ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
D. Find lim 1 x(sin(1/x 2 )) x + ∞ Put the limit in the form of . lim 1/x x + ∞ 1/x = lim x + ∞ sin(1/x 2 ) = 0 , use the L'Hopital's rule: lim 1 x(sin(1/x 2 )) x + ∞ sin(1/x 2 ) = lim 1/x sin(1/x 2 ) x + ∞ = lim [1/x]' [sin(1/x 2 )]' x + ∞ = lim -x -2 cos(1/x 2 )(-2x -3 ) x + ∞ = lim x 2cos(1/x 2 ) x + ∞ = ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a E. lim 2x 3x + 2 x Example: = 0 L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a E. lim 2x 3x + 2 x Example: = 0 = lim [2x]' [3x + 2]' x L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a E. lim 2x 3x + 2 x Example: = 0 = lim [2x]' [3x + 2]' x = 2 3 . L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a E. lim 2x 3x + 2 x Example: = 0 = lim [2x]' [3x + 2]' x = 2 3 . are of the " ∞ " indeterminate forms. ∞ If lim f(x) = lim g(x) = ∞, then lim x a x a f(x) g(x) x a L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a E. lim 2x 3x + 2 x Example: = 0 = lim [2x]' [3x + 2]' x = 2 3 . are of the " ∞ " indeterminate forms. L'Hopital’s Rule applies ∞ If lim f(x) = lim g(x) = ∞, then lim x a x a f(x) g(x) x a in these situations also, L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Remark: We need lim f(x) = lim g(x) = 0 for L'Hopital's Rule (for the 0/0-form). x a x a E. lim 2x 3x + 2 x Example: = 0 = lim [2x]' [3x + 2]' x = 2 3 . are of the " ∞ " indeterminate forms. L'Hopital’s Rule applies ∞ If lim f(x) = lim g(x) = ∞, then lim x a x a f(x) g(x) x a in these situations also, lim f(x) g(x) = lim f '(x) g'(x). x a x a that is L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ It’s the form. " ∞ " ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x ∞ 6x 4x + 1 lim x ∞ = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x ∞ 6x 4x + 1 lim x ∞ = use L'Hopital's Rule again L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x ∞ 6x 4x + 1 lim x ∞ = = use L'Hopital's Rule again [6x]' [4x + 1]' lim x ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
Example: F. Find lim 3x 2 – 4 2x 2 + x – 5 x ∞ It’s the form. " ∞ " ∞ Hence 3x 2 – 4 2x 2 + x – 5 lim x ∞ = [3x 2 – 4]' [2x 2 + x – 5]' lim x ∞ 6x 4x + 1 lim x ∞ = = use L'Hopital's Rule again [6x]' [4x + 1]' lim x ∞ = 6 4 L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) = 3 2
G. e x P(x) x ∞ where p(x) is a polynomial. Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
G. e x P(x) x ∞ where p(x) is a polynomial Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) of degree > 0 .
It’s the form. " ∞ " ∞ Hence lim x ∞ = lim x ∞ e x P(x) [e x ]' [P(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x ∞ where p(x) is a polynomial Find lim of degree > 0 .
It’s the form. " ∞ " ∞ Hence lim x ∞ = lim x ∞ e x P(x) [e x ]' [P(x)]' = lim x ∞ e x [P(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x ∞ where p(x) is a polynomial Find lim of degree > 0 .
It’s the form. " ∞ " ∞ Hence lim x ∞ = lim x ∞ e x P(x) [e x ]' [P(x)]' = lim x ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x ∞ where p(x) is a polynomial Find lim of degree > 0 .
It’s the form. " ∞ " ∞ Hence lim x ∞ = lim x ∞ = lim x ∞ e x K e x P(x) [e x ]' [P(x)]' = lim x ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. Hence lim x ∞ e x P(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x ∞ where p(x) is a polynomial Find lim of degree > 0 .
It’s the form. " ∞ " ∞ Hence lim x ∞ = lim x ∞ = lim x ∞ e x K = ∞ e x P(x) [e x ]' [P(x)]' = lim x ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. Hence lim x ∞ e x P(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x ∞ where p(x) is a polynomial Find lim of degree > 0 .
It’s the form. " ∞ " ∞ Hence lim x ∞ = lim x ∞ = lim x ∞ e x K We say that e x goes to ∞ faster than any polynomial. = ∞ e x P(x) [e x ]' [P(x)]' = lim x ∞ e x [P(x)]' Use the L'Hopital's Rule repeatedly if necessary , eventually the denominator is a non-zero constant K. Hence lim x ∞ e x P(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) G. e x P(x) x ∞ where p(x) is a polynomial Find lim of degree > 0 .
H. x p Ln(x) x ∞ where p > 0. Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ where p > 0. Find lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ Hence lim x ∞ = where p > 0. Find lim lim x ∞ x p Ln(x) [x p ]' [Ln(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ Hence lim x ∞ = where p > 0. Find lim lim x ∞ = lim x ∞ px p-1 x -1 x p Ln(x) [x p ]' [Ln(x)]' L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ Hence lim x ∞ = where p > 0. Find lim lim x ∞ = lim x ∞ px p-1 x -1 x p Ln(x) [x p ]' [Ln(x)]' = lim x ∞ px p L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ Hence lim x ∞ = where p > 0. Find lim lim x ∞ = lim x ∞ px p-1 x -1 x p Ln(x) [x p ]' [Ln(x)]' = lim x ∞ px p = ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ Hence lim x ∞ = where p > 0. Find lim lim x ∞ = lim x ∞ px p-1 x -1 We say that x p (p > 0) goes to ∞ faster than Ln(x). x p Ln(x) [x p ]' [Ln(x)]' = lim x ∞ px p = ∞ L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
H. x p Ln(x) x ∞ It’s the form. " ∞ " ∞ Hence lim x ∞ = where p > 0. Find lim lim x ∞ = lim x ∞ px p-1 x -1 We say that x p (p > 0) goes to ∞ faster than Ln(x). x p Ln(x) [x p ]' [Ln(x)]' = lim x ∞ px p = ∞ The ∞/∞ form is the same as ∞ * form since ∞/∞ = ∞ * ( 1/ ∞) and we may view that 1/ ∞ a s 0. L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + Find lim sin(x)Ln(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as 1/sin(x) Ln(x) L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim Find lim sin(x)Ln(x) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = lim -csc(x)cot(x) 1/x x + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = lim -csc(x)cot(x) 1/x x + = lim x - sin(x)tan(x) x + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = lim -csc(x)cot(x) 1/x x + = lim x - sin(x)tan(x) x + = x -sin(x) lim x + tan(x) lim x + 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = lim -csc(x)cot(x) 1/x x + = lim x - sin(x)tan(x) x + = x -sin(x) lim x + tan(x) lim x + 1 1/sin(x) Ln(x) = L'Hopital's Rule (0/0, ∞/∞, ∞ * forms)
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = lim -csc(x)cot(x) 1/x x + = lim x - sin(x)tan(x) x + = x -sin(x) lim x + tan(x) lim x + -1 1/sin(x) Ln(x) =
I. x + in the form. ∞ ∞ Hence lim sin(x)Ln(x) = lim = Find lim sin(x)Ln(x) lim L'Hopital's Rule (0/0, ∞/∞, ∞ * forms) Lim sin(x) = 0 and lim Ln(x) = - ∞ so its the 0* ∞ form. x + x + Write it as csc(x) Ln(x) csc(x) Ln(x) x + x + [csc(x)]' [Ln(x)]' x + = lim -csc(x)cot(x) 1/x x + = lim x - sin(x)tan(x) x + = x -sin(x) lim x + tan(x) = 0 lim x + -1 1/sin(x) Ln(x) =