LÍMITES Y DERIVADAS aplicados a ingenieria

UnivGonzalo 19 views 30 slides Mar 28, 2024
Slide 1
Slide 1 of 30
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30

About This Presentation

Diapositivas de limites y derivadas, aplicados en ingenieria.


Slide Content

1
4
Límites y
Derivadas

2
Límites y la Derivada
•Límites
•Límites Laterales
•Continuidad
•La Derivada

3
Introducción al Cálculo
Existen dos áreas principales de interés:
1. Encontrar la recta tangente a una curva en un
punto dado.()y f x
Recta tangente
11
,xy
2. Encontrar el área de una región plana acotada
por una curva.
Área
x
x
y
y

4
Velocidad
PromedioDistancia recorrida
Tiempo transcurrido

Instantánea
Cuando el tiempo
transcurrido se
aproxima a cero
Sobre cualquier
intervalo de tiempo
Si viajo 200 millas en 5 horas, mi velocidad
promedio es 40 millas/hora.
Cuando veo al oficial de policia, mi velocidad
instantánea es 60 millas/hora.Distancia recorrida
Tiempo transcurrido

5
Velocidad
Ej. Given the position function
2
10s t t t
where tis in seconds and s(t) is measured in
feet, find:
a.The average velocity for t= 1 to t = 3.
b.The instantaneous velocity at t= 1.ave
(3) (1) 39 11
Velocity 14 ft/sec
3 1 2
ss
  

Average velocityt( ) (1)
1
s t s
t


1.1 12.1
1.001 12.001
1.01 12.01
Answer: 12 ft/sec
Notice how
elapsed time
approaches zero

6
Límite de una Funcción
The limit of f (x), as xapproaches a, equals L
written:
if we can make the value f (x) arbitrarily close
to L by taking xto be sufficiently close to a.lim ( )
xa
f x L


a
L()y f x
x
y

7
Computing Limits
Ex.2
3 if 2
lim ( ) where ( )
1 if 2x
xx
f x f x
x
  


6
-222
lim ( ) = lim 3
xx
f x x
 
 2
3 lim
3( 2) 6
x
x


   
Note: f(-2) = 1
is not involved
x
y

8
Properties of Limits
 
 
Suppose lim ( ) and lim ( )
Then,
1. lim ( ) , real number
2. lim ( ) lim ( ) , real number
3. lim ( ) ( )
4. lim ( ) ( )
lim ( )
()
5. lim
( ) lim
x a x a
r r
xa
x a x a
xa
xa
xa
xa
f x L g x M
f x L r a
cf x c f x cL c a
f x g x L M
f x g x LM
fx
fx
gx










  

 Provided that 0
()
xa
L
M
g x M



9
Computing Limits
Ex.
Ex. 
2
3
lim 1
x
x

 2
33
lim lim1
xx
x

 
2
33
2
lim lim1
3 1 10
xx
x


   1
21
lim
35x
x
x

  
 
1
1
lim 2 1
lim 3 5
x
x
x
x




 11
11
2lim lim1
3lim lim5
xx
xx
x
x




 2 1 1
3 5 8



10
Indeterminate Form:0
0 2
5
5
lim
25x
x
x


Ex. Notice form0
0 
5
5
lim
55x
x
xx


 
5
11
lim
5 10xx


Factor and cancel
common factors

11
Limits at Infinity
For all n> 0,11
lim lim 0
nn
xxxx 

provided that is defined.1
n
x
Ex.2
2
3 5 1
lim
24
x
xx
x


 2
2
51
3
lim
2
4
x
xx
x



 3 0 0 3
0 4 4

  

Divide
by2
x 2
2
51
lim 3 lim lim
2
lim lim 4
x x x
xx
x x
x
  
 
   

   
   






12
One-Sided Limit of a Function
The right-hand limit of f (x), as xapproaches a,
equals L
written:
if we can make the value f (x) arbitrarily close
to L by taking xto be sufficiently close to the
right of a.lim ( )
xa
f x L



a
L()y f x

13
One-Sided Limit of a Function
The left-hand limit of f (x), as xapproaches a,
equals M
written:
if we can make the value f (x) arbitrarily close
to M by taking xto be sufficiently close to the
left of a.lim ( )
xa
f x M



a
M()y f x
x
y

14
One-Sided Limit of a Function2
if 3
()
2 if 3
xx
fx
xx
 


Ex. Given3
lim ( )
x
fx

 33
lim ( ) lim 2 6
xx
f x x


 2
33
lim ( ) lim 9
xx
f x x



Find
Find 3
lim ( )
x
fx

15
Continuity of a Function
A function fis continuousat the point x= aif
the following are true:) ( ) is definedi f a ) lim ( ) exists
xa
ii f x
 )lim ( ) ( )
xa
iii f x f a


a
f(a)
y
x

16
Properties of Continuous Functions
The constant function f (x) is continuous everywhere.
Ex. f (x) = 10 is continuous everywhere.
The identity function f (x) = x is continuous
everywhere.

17
Properties of Continuous Functions
A polynomial functiony= P(x) is continuous at
everywhere.
A rational function is continuous
at all x valuesin its domain.()
()
()
px
Rx
qx

If fand gare continuous at x = a, then , , and ( ) 0 are continuous
at .
f
f g fg g a
g
xa


18
Intermediate Value Theorem
If fis a continuous function on a closed interval [a, b]
and Lis any number between f (a) and f (b), then there
is at least one number cin [a, b] such that f(c) = L. ()y f x
a b
f (a)
f (b)
L
c
f (c) =
x
y

19
Intermediate Value Theorem
2
Given ( ) 3 2 5. Show that ( ) 0
has at least one solution on 1, 2 .
f x x x f x   
Ex. (1) 4 0 and (2) 3 0ff    
f (x) is continuous for all values of xand since
f (1) < 0 and f (2) > 0, by the Intermediate Value
Theorem, there exists a con (1, 2) such that
f (c) = 0.

20
Existence of Zeros of a Continuous
Function
If fis a continuous function on a closed interval [a, b],
and f(a) and f(b) have opposite signs, then there is at least
one solution of the equation f(x) = 0 in the interval (a, b).
f(b)
f(a)
a
b
x
y

21
Example
(Existence of zeros of a continuous function)
1.Show that f(x) is a continuous function everywhere.
The function is a polynomial function and is
therefore continuous everywhere.
2.Show that f(x) = 0 has at least one solution on the
interval (0, 2)Since (0) 5 and (2) 5 have opposite signs,
there must be at least one number with
0 2 such that ( ) 0.
ff
xc
c f c
  

   2
Let ( ) 3 5.f x x x  

22
Rates of Change
Averagerate of change of f over the interval
[x, x+h]( ) ( )f x h f x
h


Instantaneousrate of change of fat x
Slope of the
Tangent Line
Slope of Secant Line0
( ) ( )
lim
h
f x h f x
h


23
The Derivative0
( ) ( )
( ) lim
h
f x h f x
fx
h


The derivative of a function fwith respect to xis
the function ,f given by
It is read “f prime of x.”

24
The Derivative0
( ) ( )
( ) lim
h
f x h f x
fx
h


Four-step process for finding:f ( ) ( )f x h f x ( ) ( )f x h f x
h
 ()f x h
1. Compute
2. Find
3. Find
4. Compute

25
The Derivative 
2
00
0
( ) ( ) 4 2
lim lim
lim 4 2 4
hh
h
f x h f x xh h
hh
x h x


  

   
Given 2 2 2
( ) ( ) 2 4 2 1 (2 1)f x h f x x xh h x        2
( ) ( ) 4 2f x h f x xh h
hh
  
 
2 22
( ) 2 1 2 4 2 1f x h x h x xh h       
1.
2.
3.
4. 2
( ) 2 1, find ( ).f x x f x  2
42xh h ( ) 4f x x

26
Example
Find the slope of the tangent line to the
graph of at any
point (x, f(x)).
Step 1.
Step 2.
Step 3.
Step 4. ( ) 2( ) 3 2 2 3f x h x h x h         ( ) ( ) 2
2
f x h f x h
hh
  
   ( ) 2 3f x x   ( ) ( ) ( 2 2 3) ( 2 3) 2f x h f x x h x h           
00
( ) ( )
( ) lim lim 2 2
hh
f x h f x
fx
h


    

27
Differentiability and Continuity
If a function is differentiable at x= a, then it is
continuous at x = a.
Not
Differentiable
Not
Continuous
Still
Continuous
x
y

28
Example
The function is not
differentiable at x= 0 but it is continuous
everywhere. ()f x x
x
y
O()f x x

29
Axiomas de Probabilidad
Dado un espacio muestral W, la probabilidad P de un
evento A es un número real no negativo P(A), que debe
satisfacer los tres axiomas siguientes:
•Límites
•Límites Laterales
•Continuidad
•La Derivada

30