L2 -Infectious Disease Epidemiology.pptx

MetiD2 17 views 35 slides Jun 30, 2024
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

Epidemiology


Slide Content

Inf e ctious Dise a se Epid e miology By:-Telksew Yelma (B.Sc. Mw, M.Sc. Mw, MPHE) October 24, 2023

Infectious disease epidemiolo g y: definition T h e st u dy o f ci r cu m sta n ces u n d er which b o th p o p u la t ion in f ecti o n and dise a se o c cur in a and the fact o rs s p re a d wh i ch a nd in f lu e nce di s tri b ut i on th e ir of fre q u e n c y , in f ecti o us dise a se s .

Wh a t is Infectious Disease Epidemiol o gy? In f ectious Dise a se Epid e m i ology E p idemiology • Dea l s with p o p u l a ti o n Risk ca s e o n e – – – Two or mo r e p o p u l a ti o ns A cas e is a r i s k fa c tor The c au s e often k n own • • Id e nt i fi e s c a u s es

What is infe c tious disea s e epidemiolog y ? Two or m o re p o p ul a ti o ns • • Humans In f e c ti o us a g e n ts – H e lmi n thes, bacteria, f un g i, protozoa, virus, pri o ns • Vec t or – Mosqu i to (p r otozo a- malaria), sna i ls (helmi n th s - sch i stosomiasis) B l ackfly ( m icrofi l ari a- onc h ocer c i a s is) – • Anima l s – – D o gs a n d sh e e p /goats – E c h i n o coc c us Mice and ticks – B o r r el i a

What is infe c tious disea s e epidemiolog y ? A cas e is a ri s k f a ctor … I n f e ction in o ne p erson can be tr a nsm i tt e d to ot h ers

What is infectious disease epidemiol o gy? The c a u s e oft e n k n o wn • – An infecti o us a g e n t is a n e ces s ary ca u se What is i nfe c tious dis e a s e e pidemiology used f or? • Id e nt i fi c at i on of cau s es of n ew, em e rg i ng I n fe c ti o n s , e. g . H IV, SA R S, Swine fl u ,Eb o la Sur v e i ll a n c e o f i nf e c t i o us d i s e a s e Id e nt i fi c at i on of s o u r ce of o u tb r e a ks Stu d i e s of r o u tes of tr a n s mis s i o n & n a tu r al h i s t o r y of in f e c ti o ns Id e nt i fi c at i on of n e w i n te r v e nt i o n s • • • •

Transmission Cases • • I n d e x – t h e first case i d e n ti f i e d Prim a ry – the case th a t bri n gs the a p o p u la t ion i n fecti o n i nto • • Sec o n d ary – i n f e cted Tert i ary – in f ected by by a pr i m a ry a seco n d a ry case case o o o o Sus c e p ti b le Immu n e Su b - c l i n i c al Cli n i c al

• Natural History of Diseases

Natural Hi s tory of of Dise a ses Ref er s to the pr o gr e ssion a dise a se pr o c e ss in an i n d i vid u al ov e r t i m e , in t he a b s e nce of in t erven t io n .

Time course of a disease in relation and communicability to its clinical expression Clinical case Symptomatic Asymptomati c TIME 1 st manifestation of disease (clinical onset) Agent starts being shed Recovery Agent stops Relaps Time of infection (biological onset) Latent period Incubation period Communication period Prepatent Generation period b e i ng s hed e Clinical Threshold Chronic As y mpt o m at i c carri e r ca r r i er

Time lines f or infections

Dis e a s e Tran s mi s s i on from Infe c tious host to su s c e ptible host I n f e ctio u s Host Sus c ep t ib l e Ho s t Con t act Tra n smis s ion d e p e n d s o n: -in f ecti o us h o st -sus c e p ti b le h o st -cont a ct d e fi n iti o n -in f ecti o us a g e n t

Estimating the Transmiss i on Probabil i ty The of p r ob a bil it y that will su c c e s sful tr a nsf e r t he a g e n t o c c ur so th a t the su s c e ptible host be c om e s infe c te d . Two comm o n ways of esti m at i ng tra n smis s ion pr o b a bi l ity ar e : • S e con d ary at t ack rate • B i n o mi a l Mo d el

Secondary A t tack Rate n e w cases of kn o wn A m e asure of the fr e q u e n cy of a d i sease a m o n g t h e con t acts cases. of • F irst in f ecti o us ( in d ex case ) in d ivid u als a re id e nt i fi e d N u mber of p ersons e x pos e d (have contact w i th a kno w n case) who dev e l o p dis e ase X 1 n S A R = T otal number of s uscept i ble e x pos e d person

Binomial Model of Transmission Probabil i ty Nu m ber of s usc e ptible who become inf e c t ed T o tal n u m b er of contac t s with infe c ti v es •Su s c e pt i b l e a r e i d e nt i fi e d a nd u s u a lly u s ed wh e n th e y ma d e mo r e th a n o ne p o te n ti a lly i n fe c ti o us c o nt a c t s •The n u me r at o r is t h e same as for SA R . •De n omi n at o r i n c l u de the to t al n u mb e r of p o te n ti a lly in f e c ti o us c o nt a cts th a t s u s c e pt i ble in d iv i du a ls ma k e

Bin o mi a l … • The with The p r o b a b il i ty of tr a n s missi o n d u ri n g a c o nt a ct a s u s c e p ti b le an d a n i n fe c ti o us perso n i s p . p r o b a b il i ty of the s u s c e pt i b l e pe r s o n e s c a p i ng • i n fe c ti o n d u ri n g c o nt a ct is q ( o r 1 - p) . • If a sus c ept i ble ma k es n con t a c ts with an inf e c t ive or with diff e r e nt inf e c t iv e s and each the c o nta c t is indep e nd e nt of t h e othe r s, prob a bili t y of e s c a ping inf e c ti on f r om all n q n = ( 1 - p ) n . p o t e nti a l inf e c t iv e s is • The p ro b ab i lity of be i ng in f e c ted aft e r n c o nt a cts is q n = 1 - ( 1 - p) n . 1 -

Bin o mi a l … E . g .. – A Stu d y of HIV t r a n s mis s i o n was c o n d u c ted in a po p ul a ti o n b e g i n n i ng , of 100 st e ady sexual coupl es . A t the one c o u p le was a l r e a d y i n fe c te d . 25 b e c a me i n fe c te d . The to t al c o nt a c t s was 1500 . n u m b er of sex u al what i s pr o ba b ili t y o f be i ng in f e c ted aft e r 2 c o nt a ct s . – 1-(1-p) 2 = t h e p r o b a b i li t y b e i n g i n fe c ted – P = 25 / 15 0=0. 16 – 0. 34

Leve l s of Dise a se Occurrence 1. Exp e ct e d Le v els • • • End e mic Hyp e r-end e mic Spor a dic 2. Ex c e s s o c c urren c e • Epid e mi c /Outbre a k • Pa n d e mic

Ba s ic Repr o d u ctive N u mb e r ( R o ) • R o is the ex p ected number of n e w in f ectious ho s ts (cas e s) t h a t o ne infectious c a se w i l l pro d u c e d u ring the period of infect i ou s ne s s. The v alue of R o is n ot sp e cif i c to a n age n t, but to a n • ag e nt p o pulat i on w i t h i n a part i cular h ost pop u lat i on at a particular t i me. In f ection w i ll ….. dis a pp e a r , if R o < en d emic, if R o = 1 1 ep i demic, if R o > 1

What determines R ? • P, t r an s m i ssion prob a bil i ty p er ex p os u re – de p en d s the i n fec t i o n on HI V , p ( h a nd shak e )=0, p ( t ransfus i o n )=1 i n terventions of t en aim at reduc i ng p  • use g l oves, screened bl o od C, number of c ontacts per t i me u nit – relev a nt contact d e p e n d s on infecti o n S a me room, w i thin sne e zi n g distanc e , skin contact. i n terventions of t en aim at reduc i ng c Isolati o n, s e x ual absti n ence   • D, d u ration of infectious p e riod be reduced by m ed i cal i n terventions (TB) w i l l HIV t r eatment a f f ect R in a pop u lat i on? M ay How

Effective Reproductive Number (R) • R u n li k e R o a s sumes that all conta c ts by the infe c ti v e c ase a r e not with susceptible individual s . • Thu s , R= R o x ( pro p ortion of sus c ept i ble p o p u la t ion) Example: if R o is 9 and 5 % of the po p ulation is immu n e R= 9 x 0.5 = 4 . 5 So e f f e c t iv e ly a c a s e of the dis e a s e will p rod u ce o n ly 4.5 c a s e s

r r M ethod for prevention and control of i nfectious diseases 1. • • In c re a s i ng ho s t re s i s tan c e