Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water tr...
Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.
Size: 1.06 MB
Language: en
Added: May 09, 2022
Slides: 36 pages
Slide Content
WATER SUPPLY ENGINEERING
ENVIRONMENT ENGINEERING I
SOURCES OF WATER
Public Water Supply Projects
In any public water supply project, following steps are essential -
1.Estimationofwaterdemandduringdesignperiod(quantityrequirementinservicelife)
2.Identificationofwatersourceandmeansofwaterwithdrawalfromthesource
3.Arrangementforconveyingrawwaterfromwithdrawalpointtothetreatmentfacility
4.Watertreatmentforproducingusablequalitywaterattreatmentplant
5.Transmissionofwaterfromtreatmentplanttostoragestructures
6.Waterdistributiontoendconsumers
2ASST.PROF. PRACHI DESSAI
Criteria for Water Source Selection
Characteristicsofthesource(s)ofwater,and
wateritself:
1.AvailabilityofWater
2.GenerallongevityoftheSources(short-
termandlong-term)
3.Waterquality
4.Potentialforfuturepollution
5.Accesstothesource
3ASST.PROF. PRACHI DESSAI
Criteria for Water Source Selection
Regionalgeographicproperties:
1.Distanceofsourcefromthecenterofwater
consumption
2.Availabilityofnaturalorman-madewater
storagecapacities
3.Availabilityofanynearbyelevatedterrain
4.Natureofsoilstobeusedforinstalling
waterconveyance
Feasibilityforstage-wisedevelopment
1.Economicsandcost
4ASST.PROF. PRACHI DESSAI
Natural Sources of Water
Wateristhemostabundantcompoundinnature.Itcovers75%oftheearthsurface.About97.3%of
wateriscontainedinthegreatoceansthataresalineand2.14%isheldinicecapsglaciersinthe
poles,whicharealsonotuseful.
Surface water
◦Streams & Rivers
◦Ponds & Lakes
◦Impounding
◦reservoir
Subsurface water
◦Infiltration galleries
◦Infiltration wells
◦Springs
5ASST.PROF. PRACHI DESSAI
Development of Tube Wells
1.Itclearsthewaterbearingformationcloggedbythemudinthedrillingoperation.
2.Itcausesthegravelpackandsurroundingformationtosettleandtogetcompactedagainstthe
screen,thusitmakesthetubewellstructurestable.
3.Itservestobreakdownthebridgingofsandgrainsacrossthescreenopeningsandinthe
surroundinggravelpackandaquiferformationandmakesthewellefficient.
4.Ithelpsinreducingheadlossesnearthescreen.
5.Itbringsthewelltoitsmaximumcapacitythatismaximumyieldisavailableat
minimumdrawdown.
6.Itgivesameasureofavailablewatersupplyandhelpsindeterminingtherequired
characteristicsofapumpandpowerunittobeinstalled.
7.Ithelpsinobtainingsandfreewaterbystabilizingthesandformationaroundthescreen.
27ASST.PROF. PRACHI DESSAI
Method # 1. Development by Pumping:
1.Inthismethodwaterisultimatelypumpedfromthewellatadischargeequaltoorhigherthanthe
designdischarge.
2.Avariablespeedpumpoflargecapacityisused.
3.Wateriswithdrawnatveryslowrateinthebeginning.
4.Thentherateofwithdrawalisincreasedinsteps.
5.Inbetweenthestepstherateofwithdrawaliskeptconstantuntilnofurthersandparticlesare
removed.
6.Pumpingshouldbecontinueduntilthemaximumdischargeisreachedandnofurthersand
particlesarewithdrawn.
7.Thewaterwithdrawalisthenstoppedandthewaterlevelisallowedtorisetoitsnormalposition.
8.Theprocedureisagainrepeateduntilnofurthersandparticlesareremoved.
28ASST.PROF. PRACHI DESSAI
Method # 2. Development by Surging:
1.Asurgeisformedbythereciprocatingmovementofaplungerinthewell.
2.Thewatermovesalternatelyintothesoilandcomesoutinthewellduringdownwardand
backwardstrokerespectively.
3.Thespeedoftheplungerisslowlyincreased.
4.Theplungerisoperatedinthecasingpipeprovidedabovethescreenedportionofthewell.
5.Therepeatedapplicationofsurgingforcedrawsthefineparticlesintothewell,leavingcoarser
particlesintactintheaquifer.
6.Alternatesurgingandbailingiscontinuedtodrawsandfromaquiferandtoremovethatwater
fromthewellrespectivelytillnosandisdrawnintothewell.
29ASST.PROF. PRACHI DESSAI
Method # 3. Development by Back-
Washing:
1.itisaprocessinwhichthewaterismadetoflowintotheaquiferformationfromthewellthrough
thescreen.
2.Theback-washingcausesagitationoftheformationandbreaksdownthebridgingofsand
particles.Back-washingthushelpsineffectiveremovaloffineparticles.
3.Variousmethodscanbeusedforcreatingback-washorcausingreverseflow.
4.Themainmethodsare:
(a)Intermittentpumpingmethod;
(b)Back-washingwithbailers;and
(c)Back-washingwithairpressure.
30ASST.PROF. PRACHI DESSAI
Method # 4. Development by Using
Chemicals:
i.Dispersingagentsaremanytimesaddedtothewaterusedforback-washingorjetting.
ii.Thedispersingagentscounteractthepropertyofclaytosticktosandparticles.
iii.Thecommondispersingagentswhicharequiteeffectivearevariouspolyphosphateslike
Tetrasodiumpyrophosphate,Sodiumtripolyphosphate,sodiumhexametaphosphate(Calgon)
andsodiumdeptaphosphate.
iv.Oncethedispersingagentneutralizescolloidalpropertyofclayitcanbeeasilyremovedby
surgingandback-washing.
31ASST.PROF. PRACHI DESSAI
Yield of Wells and Specific Yield of
Wells
PumpingTest:
1.Inthismethodwateriswithdrawnfromthewellfreelytillacriticaldepressionheadorasafe
maximumheadiscreated.
2.Oncethisstageisreachedtherateofpumpingissoadjustedastomaintaintheconstantwater
levelinthewell.Thusthedepressionheadremainsconstant.
3.Naturallyatthisstagetherateatwhichwaterispumpedoutofthewellwillbeequaltotherateat
whichwaterpercolatesintothewell.
4.Thisrateisexpressedinm3/hrandwillbeobviouslytheyieldofthewell.
32ASST.PROF. PRACHI DESSAI
Yield of Wells and Specific Yield of
Wells
RecuperationTest:
1.Waterlevelinthewellisdepressedbypumpingtoanylevelbelowthenormallevel.
2.Thenthepumpingisstoppedandtimetakenbythepercolatingwatertofillthewelltoany
particularlevelisnoted.
3.Totalquantityofwaterpercolatedintothewelliscalculatedbyknowingcross-sectionalareaand
riseinthewaterlevelafterstoppageofpumping.
4.Therateofpercolationortheyieldofwellcanbearrivedatbydividingthequantityofwaterby
thetime.
5.Thistestiscarriedoutgenerallyinadriestperiodtotakeworstconditionintoaccount.
33ASST.PROF. PRACHI DESSAI
Specific Yield of Wells:
Specificyielddependson:
◦positionofthewater-table
◦permeabilityandporosityofthesoilformation
◦therateofwaterwithdrawalfromthewell
◦quantityofwaterstorageinthewell.Specificyieldofthewellisalsocalledspecificcapacityof
thewell.
Itcanbecalculatedfromthefollowingformula:
K = 2.303 [A/T log H1/H2]
WhereKisspecificyieldofawellinm3/hrunderdepressionheadofonemeter.
Aisareaofwellinplaninm2.
TistotaltimeofrecuperationtobringwaterlevelfromdepthH1toH2
H1isdifferenceofwaterlevelinthewelljustafterstoppageofpumpingandthenormalwaterlevel
ofthewell
H2isdifferenceofwaterlevelinthewellaftertimeTandnormalwaterlevelofthewell.
34ASST.PROF. PRACHI DESSAI
35ASST.PROF. PRACHI DESSAI
Recommended Readings
i.Mark J. Hammer; Water and Waste Water Technology; Prentice Hall of India.
ii.S. K. Garg; Water Supply Engineering; Khanna Publ.
iii.B. C. Punmia, A. K. Jain; Water Supply Engineering; Laxmi Publication.
iv.G. S. Birdie; Water Supply Engineering and Sanitary Engineering; Dhanpat Rai.
v.R. C. Rangwala; Water Supply Engineering, Charotar Publ. House.
ASST. PROF. PRACHI DESSAI 36