Laurents & Taylors series of complex numbers.pptx

jyotidighole2 78 views 8 slides Jan 09, 2024
Slide 1
Slide 1 of 8
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8

About This Presentation

Laurents & Taylors series of complex numbers


Slide Content

ICEEM,AURANGABAD TAYLORS AND LAURENTS SERIES Taylor’s Series If 𝑓 (𝑧) is analytic inside and on a circle C with centre at point β€˜a’ and radius β€˜R’ then at each point Z inside C, β€² β€²β€² 𝑓 ( 𝑧 ) = 𝑓 ( π‘Ž ) + ( 𝑧 βˆ’ π‘Ž ) 𝑓 ( π‘Ž ) + ( 𝑧 βˆ’ π‘Ž ) 2 𝑓 ( π‘Ž ) + β‹― 1! 2! (OR) 𝑛 ! 𝑓 ( 𝑧 ) = βˆ‘ ∞ 𝑛 = (π‘§βˆ’π‘Ž) 𝑛 𝑓 𝑛 (π‘Ž) This is known as Taylor’s series of 𝑓(𝑧) about 𝑧 = π‘Ž. Note: 1 Putting π‘Ž = in the Taylor’s series we get β€² β€²β€² 𝑓 ( 𝑧 ) = 𝑓 ( ) + ( 𝑧 βˆ’ ) 𝑓 (0) + ( 𝑧 βˆ’ ) 2 𝑓 (0) + β‹― this series is called Maclaurin’s Series. 1! 1! Note: 2 The Maclaurin’s for some elementary functions are 1) ( 1 βˆ’ 𝑧 ) βˆ’1 = 1 + 𝑧 + 𝑧 2 + 𝑧 3 + β‹―, when | 𝑧 | < 1 2) ( 1 + 𝑧 ) βˆ’1 = 1 βˆ’ 𝑧 + 𝑧 2 βˆ’ 𝑧 3 + β‹―, when | 𝑧 | < 1 3) ( 1 βˆ’ 𝑧 ) βˆ’2 = 1 + 2𝑧 + 3𝑧 2 + 4𝑧 3 + β‹―, when | 𝑧 | < 1 4) ( 1 + 𝑧 ) βˆ’2 = 1 βˆ’ 2𝑧 + 3𝑧 2 βˆ’ 4𝑧 3 + β‹―, when | 𝑧 | < 1 1 ! 2 ! 2 5) 𝑒 𝑧 = 1 + 𝑧 + 𝑧 + β‹― when | 𝑧 | < ∞ 1 ! 2 ! 2 6) 𝑒 𝑧 = 1 βˆ’ 𝑧 + 𝑧 + β‹― when | 𝑧 | < ∞ 3 ! 5 ! 3 5 7) sin 𝑧 = 𝑧 βˆ’ 𝑧 + 𝑧 + β‹― when | 𝑧 | < ∞ 2 ! 4 ! 2 4 8) c o s 𝑧 = 1 βˆ’ 𝑧 + 𝑧 + β‹― w h e n | 𝑧 | < ∞ LAURENTS SERIES If 𝑐 1 π‘Žπ‘›π‘‘ 𝑐 2 are two concentric circles with centre at 𝑧 = π‘Ž and radii π‘Ÿ 1 π‘Žπ‘›π‘‘ π‘Ÿ 2 ( π‘Ÿ 1 < π‘Ÿ 2 ) and if 𝑓 ( 𝑧 ) is analytic inside on the circles and within the annulus between 𝑐 1 π‘Žπ‘›π‘‘ 𝑐 2 then for any z in the annulus, we have 𝑓 ( 𝑧 ) = βˆ‘ ∞ π‘Ž 𝑛 ( 𝑧 βˆ’ π‘Ž ) 𝑛 + βˆ‘ ∞ 𝑏 ( 𝑧 βˆ’ π‘Ž ) βˆ’ 𝑛 … (1 ) 𝑛=0 𝑛=1 𝑛 𝑛 Where π‘Ž = 𝑛 1 𝑓(𝑧) ∫ 𝑑𝑧 and 𝑏 = 2πœ‹π‘– 𝑐 1 (π‘§βˆ’π‘Ž) 𝑛+1 2πœ‹π‘– 𝑐 2 (π‘§βˆ’π‘Ž) 1βˆ’π‘› 1 𝑓(𝑧) ∫ 𝑑𝑧 and the integration being taken in positive direction. This series (1) is called Laurent series of 𝑓 ( 𝑧 ) about the point 𝑧 = π‘Ž πŸ’ Example: Expand 𝒇 ( 𝒛 ) = 𝒄𝒐𝒔𝒛 as a Taylor’s series about 𝒛 = 𝝅 . Solution: Complex calculus

Function Value of function at 𝑧 = πœ‹ 4 𝑓 ( 𝑧 ) = π‘π‘œπ‘ π‘§ 𝑓 ( πœ‹ ) = cos ( πœ‹ ) = 1 4 4 √ 2 𝑓 β€² ( 𝑧 ) = βˆ’ 𝑠𝑖 𝑛 𝑧 𝑓 β€² ( πœ‹ ) = βˆ’π‘ π‘–π‘› ( πœ‹ ) = βˆ’ 1 4 4 √ 2 𝑓 β€²β€² ( 𝑧 ) = βˆ’π‘π‘œπ‘ π‘§ 𝑓 β€²β€² ( πœ‹ ) = βˆ’π‘π‘œπ‘  ( πœ‹ ) = βˆ’ 1 4 4 √ 2 𝑓 β€²β€²β€² ( 𝑧 ) = 𝑠𝑖𝑛𝑧 𝑓 β€²β€² ( πœ‹ ) = 𝑠𝑖𝑛 ( πœ‹ ) = 1 4 4 √ 2 β€² πœ‹ The Taylor series of 𝑓 ( 𝑧 ) about 𝑧 = πœ‹ is 𝑓 ( 𝑧 ) = 𝑓 ( πœ‹ ) + (𝑧 βˆ’ πœ‹ ) 𝑓 ( 4 ) + (𝑧 βˆ’ πœ‹ ) 2 β€²β€² πœ‹ 4 4 4 1 ! 4 2 ! 𝑓 ( 4 ) + β‹― βˆ’ 1 2 βˆ’ 1 √ 2 4 1 ! 4 2 ! π‘π‘œπ‘ π‘§ = 1 + (𝑧 βˆ’ πœ‹ ) √ 2 + (𝑧 βˆ’ πœ‹ ) √ 2 + β‹― Example: Expand 𝒇 ( 𝒛 ) = π’π’π’ˆ (𝟏 + 𝒛) as a Taylor’s series about 𝒛 = 𝟎 . Solution: Function Value of function at 𝑧 = 𝑓 ( 𝑧 ) = π‘™π‘œπ‘” (1 + 𝑧) 𝑓 ( ) = π‘™π‘œπ‘” (1 + 0) = 𝑓 β€² ( 𝑧 ) = 1 1 + 𝑧 𝑓 β€² ( ) = 1 1 + = 1 𝑓 β€² β€² ( 𝑧 ) = βˆ’1 𝑓 β€²β€² ( ) = βˆ’1 = βˆ’1 ( 1 + 𝑧 ) 2 ( 1 + ) 2 𝑓 β€²β€² β€² ( 𝑧 ) = 2 𝑓 β€²β€² β€² (0) = 2 = 2 ( 1 + 𝑧 ) 3 ( 1 + ) 3 The Taylor series of 𝑓 ( 𝑧 ) about 𝑧 = is β€² β€²β€² 𝑓 ( 𝑧 ) = 𝑓 ( ) + ( 𝑧 βˆ’ ) 𝑓 (0 ) + ( 𝑧 βˆ’ ) 2 𝑓 (0 ) + β‹― 1! 2! π‘™π‘œπ‘” (1 + 𝑧) = + ( 𝑧 ) 1 + ( 𝑧 ) 2 βˆ’1 + β‹― 1! 2! π‘™π‘œπ‘” (1 + 𝑧) = ( 𝑧 ) 1 βˆ’ ( 𝑧 ) 2 1 + β‹― 1! 2! Example: Expand 𝒇 ( 𝒛 ) = 𝒛 𝟐 βˆ’πŸ ( 𝒛 +𝟐 )( 𝒛+ πŸ‘) as a Laurent’s series if (i) | 𝒛 | < 2 (ii) | 𝒛 | > 3 (iii) 𝟐 < | 𝒛 | < 3 Solution: ICEEM,AURANGABAD Complex calculus

Given 𝑓 ( 𝑧 ) = 𝑧 2 βˆ’1 (𝑧+2)(𝑧+3) is an improper fraction. Since degree of numerator and degree of denominator of 𝑓 ( 𝑧 ) are same ∴ Apply division process 1 𝑧 2 + 5𝑧 + 6 𝑧 2 βˆ’ 1 𝑧 2 + 5𝑧 + 6 βˆ’5𝑧 βˆ’ 7 ∴ 𝑧 2 βˆ’1 (𝑧+2)(𝑧+3) = 1 βˆ’ 5 𝑧 + 7 ( 𝑧 + 2 ) ( 𝑧 + 3 ) … ( 1) C o n s i d e r = + 5 𝑧 + 7 𝐴 𝐡 ( 𝑧 + 2)( 𝑧 + 3 ) 𝑧 + 2 𝑧 + 3 β‡’ 5𝑧 + 7 = 𝐴 ( 𝑧 + 3 ) + 𝐡 ( 𝑧 + 2 ) Put 𝑧 = βˆ’2, we get βˆ’10 + 7 = 𝐴 (1) β‡’ 𝐴 = βˆ’3 Put 𝑧 = βˆ’3, we get βˆ’15 + 7 = 𝐡(βˆ’1) β‡’ 𝐡 = 8 ∴ 5 𝑧 + 7 = βˆ’3 + 8 ( 𝑧 + 2)( 𝑧 + 3 ) 𝑧 + 2 𝑧 + 3 ∴ ( 1 ) β‡’ 1 βˆ’ βˆ’ 3 8 𝑧 + 2 𝑧 + 3 (i) Given | 𝑧 | < 2 ∴ 𝑓 ( 𝑧 ) = 1 + βˆ’ 3 8 2(1+ 𝑧 ⁄ 2 ) 3(1+ 𝑧 ⁄ 3 ) 3 ( 𝑧 βˆ’ 1 8 𝑧 = 1 + 1 + ⁄ ) βˆ’ (1 + ⁄ ) 2 2 3 3 βˆ’ 1 3 2 𝑧 2 2 𝑧 2 8 3 𝑧 3 3 𝑧 2 = 1 + [ 1 βˆ’ + [ ] + β‹― ] βˆ’ [ 1 βˆ’ + [ ] + β‹― ] 2 𝑛 = 1 + 3 βˆ‘ ∞ 𝑛 = ( βˆ’1 ) [ 𝑧 𝑛 8 2 3 ] βˆ’ βˆ‘ ∞ 𝑛 = 3 𝑛 ( βˆ’1 ) 𝑛 [ 𝑧 ] (ii) Given | 𝑧 | > 3 ∴ 𝑓 ( 𝑧 ) = 1 + βˆ’ 3 8 𝑧(1+ 2 ⁄ 𝑧 ) 𝑧(1+ 3 ⁄ 𝑧 ) 3 ( 2 ⁄ 8 3 ⁄ = 1 + 1 + 𝑧 ) βˆ’ (1 + 𝑧 ) 𝑧 𝑧 βˆ’ 1 βˆ’ 1 𝑧 𝑧 𝑧 2 2 3 2 8 𝑧 3 𝑧 𝑧 3 2 = 1 + [ 1 βˆ’ + [ ] + β‹― ] βˆ’ [ 1 βˆ’ + [ ] … ] 𝑛 𝑛 = 2 𝑧 𝑧 𝑛 = 1 + 3 βˆ‘ ∞ ( βˆ’1 ) [ ] βˆ’ 8 𝑧 βˆ‘ ∞ 𝑛 = 𝑧 𝑛 ( βˆ’1 ) 𝑛 [ 3 ] (iii) Given 2 < | 𝑧 | < 3 ICEEM,AURANGABAD Complex calculus

∴ 𝑓 ( 𝑧 ) = 1 + 3 𝑧(1+ 2 ⁄ 𝑧 ) βˆ’ 8 3(1+ 𝑧 ⁄ 3 ) 3 ( βˆ’ 1 8 2 ⁄ 𝑧 = 1 + 1 + 𝑧 ) βˆ’ (1 + ⁄ ) 𝑧 3 3 βˆ’ 1 2 2 = 1 + 3 [ 1 βˆ’ 2 + [ 2 ] + β‹― ] βˆ’ 8 [ 1 βˆ’ 𝑧 + [ 𝑧 ] … ] 𝑧 𝑧 𝑧 3 3 3 𝑛 𝑛 = 2 𝑧 𝑧 = 1 + 3 βˆ‘ ∞ ( βˆ’1 ) [ ] 𝑛 βˆ’ 8 3 βˆ‘ ∞ 𝑛 = 3 𝑛 ( βˆ’1 ) 𝑛 [ 𝑧 ] Example: Find the Laurent’s series expansion of 𝒇 ( 𝒛 ) = πŸ• 𝒛 βˆ’ 𝟐 𝒛(π’›βˆ’πŸ)(𝒛+𝟏) in 𝟏 < | 𝒛 + 𝟏 | < 3 . Also find the residue of 𝒇 ( 𝒂 ) at 𝒛 = βˆ’ 𝟏 Solution: Given 𝑓 ( 𝑧 ) = 7 𝑧 βˆ’ 2 𝑧(π‘§βˆ’2)(𝑧+1) = 𝐴 + + 7 𝑧 βˆ’ 2 𝐡 𝐢 𝑧 ( 𝑧 βˆ’ 2 )( 𝑧 + 1 ) 𝑧 𝑧 βˆ’ 2 𝑧 + 1 7𝑧 βˆ’ 2 = 𝐴 ( 𝑧 βˆ’ 2 )( 𝑧 + 1 ) + 𝐡𝑧 ( 𝑧 + 1 ) + 𝐢𝑧 ( 𝑧 βˆ’ 2 ) Put 𝑧 = 2, we get 14 βˆ’ 2 = 𝐡 ( 2 ) (2 + 1) β‡’ 12 = 6𝐡 β‡’ 𝐡 = 2 Put 𝑧 = βˆ’1, we get βˆ’7 βˆ’ 2 = 𝐢(βˆ’1) ( βˆ’1 βˆ’ 2 ) β‡’ βˆ’9 = 3𝐢 β‡’ 𝐢 = βˆ’3 Put 𝑧 = we get βˆ’2 = 𝐴 ( βˆ’2 ) β‡’ 𝐴 = 1 ∴ 𝑓 ( 𝑧 ) = 1 + βˆ’ 2 3 𝑧 𝑧 βˆ’ 2 𝑧 + 1 Given region is 1 < | 𝑧 + 1 | < 3 Let 𝑒 = 𝑧 + 1 β‡’ 𝑧 = 𝑒 βˆ’ 1 (𝑖. 𝑒) 1 < | 𝑒 | < 3 1 N o w 𝑓 ( 𝑧 ) = + 2 βˆ’ 3 𝑒 βˆ’ 1 𝑒 βˆ’ 3 𝑒 1 𝑒(1βˆ’ 1 ⁄ 𝑒 ) = + 2 βˆ’ 3 βˆ’3(1βˆ’ 𝑒 ⁄ 3 ) 𝑒 1 ( 1 ⁄ βˆ’ 1 2 𝑒 βˆ’ 1 3 = 1 βˆ’ 𝑒 ) βˆ’ (1 βˆ’ ⁄ ) βˆ’ 𝑒 3 3 𝑒 𝑒 𝑒 𝑒 3 1 1 2 𝑒 3 3 1 2 𝑒 2 = [1 + + [ ] + β‹― ] βˆ’ [ 1 + + [ ] + β‹― ] βˆ’ 3 𝑒 1 𝑧 + 1 1 [ 1 𝑧 + 1 𝑧 + 1 2 2 3 3 3 𝑧+1 𝑧+1 2 = [1 + + ] + β‹― ] βˆ’ [ 1 + + [ ] + β‹― ] βˆ’ 3 𝑧+1 ICEEM,AURANGABAD Complex calculus

= 1 𝑧+1 𝑛 βˆ‘ ∞ 𝑛=0 𝑧+1 3 𝑧 + 1 3 [ 1 ] βˆ’ 2 βˆ‘ ∞ 𝑛 𝑛 = [ 1 ] βˆ’ 3 𝑧+1 1 𝑧 + 1 Also 𝑅𝑒𝑠 [ 𝑓 ( 𝑧 ) , 𝑧 = βˆ’1 ] = coefficient of = βˆ’2 Example: Expand 𝒇 ( 𝒛 ) = 𝟏 (π’›βˆ’πŸ)(π’›βˆ’πŸ) in a Laurent’s series valid in the region (i) | 𝒛 βˆ’ 𝟏 | > 1 (ii) 𝟎 < | 𝒛 βˆ’ 𝟐 | < 1 (iii) | 𝒛 | > 2 (iv) 𝟎 < | 𝒛 βˆ’ 𝟏 | < 1 Solution: Given 𝑓 ( 𝑧 ) = 𝟏 (π’›βˆ’πŸ)(π’›βˆ’πŸ) C o n s i d e r = + 1 𝐴 𝐡 ( z βˆ’ 1)( z βˆ’ 2 ) 𝑧 βˆ’ 1 𝑧 βˆ’ 2 β‡’ 1 = 𝐴 ( 𝑧 βˆ’ 2 ) + 𝐡 ( 𝑧 βˆ’ 1 ) Put 𝑧 = 2, we get 1 = 𝐡(1) β‡’ 𝐡 = 1 Put 𝑧 = 1 we get 1 = 𝐴 ( 1 βˆ’ 2 ) β‡’ 𝐴 = βˆ’ 1 ∴ 𝑓 ( 𝑧 ) = βˆ’1 + 1 𝑧 βˆ’ 1 𝑧 βˆ’ 2 (i) Given region is | 𝑧 βˆ’ 1 | > 1 Let 𝑒 = 𝑧 βˆ’ 1 β‡’ 𝑧 = 𝑒 + 1 ( 𝑖 . 𝑒 ) | 𝑒 | > 1 Now 𝑓 ( 𝑧 ) = βˆ’ 1 + 1 𝑒 𝑒 βˆ’ 1 = βˆ’1 + 1 𝑒 𝑒(1βˆ’ 1 ⁄ 𝑒 ) βˆ’1 1 ( 1 ⁄ = 𝑒 + 𝑒 1 βˆ’ 𝑒 ) βˆ’ 1 βˆ’ 1 1 𝑒 𝑒 1 𝑒 𝑒 1 2 = + [1 + + [ ] + β‹― ] βˆ’ 1 1 𝑧 + 1 𝑧 + 1 = + [1 + + 1 [ 1 𝑧 + 1 𝑧 + 1 2 ] + β‹― ] βˆ’ 1 1 [ 1 𝑧 + 1 𝑛 ] βˆ‘ ∞ 𝑛 = = + 𝑧+1 𝑧+1 (ii) Given < | 𝑧 βˆ’ 2 | < 1 Let 𝑒 = 𝑧 βˆ’ 2 β‡’ 𝑧 = 𝑒 + 2 (𝑖. 𝑒) < | 𝑒 | < 1 Now 𝑓 ( 𝑧 ) = βˆ’ 1 + 1 𝑒 + 1 𝑒 = βˆ’ ( 1 + 𝑒 ) βˆ’1 + 1 𝑒 ICEEM,AURANGABAD Complex calculus

= βˆ’ [ 1 βˆ’ 𝑒 + [ 𝑒 ] 2 + β‹― ] + 1 𝑒 = βˆ’ [ 1 βˆ’ ( 𝑧 βˆ’ 2 ) + [ 𝑧 βˆ’ 2 ] 2 + β‹― ] + 1 π‘§βˆ’2 1 π‘§βˆ’2 = βˆ’ βˆ‘ ∞ [ βˆ’1 ] 𝑛 [ 𝑧 βˆ’ 2 ] 𝑛 + 𝑛 = (iii) Given | 𝑧 | > 2 Now 𝑓 ( 𝑧 ) = βˆ’ + 1 1 1 2 𝑧(1βˆ’ 𝑧 ) 𝑧(1βˆ’ 𝑧 ) βˆ’1 βˆ’1 = βˆ’ 1 (1 βˆ’ 1 ) + 1 (1 βˆ’ 2 ) 𝑧 𝑧 𝑧 𝑧 1 2 1 1 1 𝑧 𝑧 𝑧 𝑧 2 𝑧 𝑧 2 2 = βˆ’ [ 1 + + [ ] + β‹― ] + [ 1 + + [ ] + β‹― ] 𝑧 𝑧 𝑛 𝑛 = βˆ’ 1 βˆ‘ ∞ [ 1 ] + 1 βˆ‘ β‡βˆž [ 2 ] 𝑛=0 𝑧 𝑛=0 𝑧 (iv) Given < | 𝑧 βˆ’ 1 | < 1 Let 𝑒 = 𝑧 βˆ’ 1 β‡’ 𝑧 = 𝑒 + 1 ( 𝑖 . 𝑒 ) < | 𝑒 | < 1 Now 𝑓 ( 𝑧 ) = βˆ’ 1 + 1 𝑒 𝑒 βˆ’ 1 = βˆ’ 1 + 1 𝑒 βˆ’ 1 [ 1 βˆ’ 𝑒 ] 𝑒 = βˆ’ 1 βˆ’ ( 1 βˆ’ 𝑒 ) βˆ’1 𝑒 = βˆ’ 1 βˆ’ [ 1 + 𝑒 + [ 𝑒 ] 2 + β‹― ] = βˆ’ βˆ’ [ 1 + 𝑧 βˆ’ 1 + [ 𝑧 βˆ’ 1 ] 2 + β‹― ] = βˆ’ 1 π‘§βˆ’1 1 π‘§βˆ’1 βˆ’ βˆ‘ ∞ [ 𝑧 βˆ’ 1 ] 𝑛 𝑛 = Example: Expand 𝒇 ( 𝒛 ) = 𝒛 ( 𝒛 +𝟏 )( π’›βˆ’ 𝟐) in a Laurent’s series about (i) 𝒛 = βˆ’πŸ (ii) 𝒛 = 𝟐 Solution: C o n s i d e r = + 𝒛 𝑨 𝑩 ( 𝒛+ 𝟏 )( 𝒛 βˆ’ 𝟐) 𝒛 + 𝟏 π’›βˆ’ 𝟐 β‡’ 𝑧 = 𝐴 ( 𝑧 βˆ’ 2 ) + 𝐡 ( 𝑧 + 1 ) Put 𝑧 = 2, we get 2 = 𝐡(3) β‡’ 𝐡 = 2 3 Put 𝑧 = βˆ’ 1 we get βˆ’1 = 𝐴 ( βˆ’3 ) β‡’ 𝐴 = 1 3 ∴ 𝑓 ( 𝑧 ) = + 1 2 3 ( 𝑧 + 1 ) 3 ( 𝑧 βˆ’ 2 ) (i)To expand 𝑓(𝑧) about 𝑧 = βˆ’1 ICEEM,AURANGABAD Complex calculus

ICEEM,AURANGABAD (or) | 𝑧 βˆ’ 1 | < 1 Put 𝑧 + 1 = 𝑒 β‡’ 𝑧 = 𝑒 βˆ’ 1 β‡’ | 𝑧 βˆ’ 1 | < 1 β‡’ | 𝑒 | < 1 Now 𝑓 ( 𝑧 ) = 1 + 3𝑒 3(π‘’βˆ’3) 2 = 3 𝑒 1 + 2 3((βˆ’3)(1βˆ’ 𝑒 ⁄ 3 )) 𝑒 = 1 βˆ’ 2 (1 βˆ’ ⁄ ) 3𝑒 9 3 βˆ’ 1 1 2 3 𝑒 9 𝑒 3 3 𝑒 2 = βˆ’ [ 1 + + [ ] + β‹― ] = 1 2 3( 𝑧 + 1 ) 9 βˆ’ [1 + ( 𝑧 + 1 ) 3 + [ ( 𝑧 + 1 ) 3 2 ] + β‹― ] 1 = βˆ’ 3( 𝑧 + 1 ) 9 3 [ ] 𝑛 2 βˆ‘ ∞ (𝑧+1) 𝑛 = (ii) To expand 𝑓(𝑧) about 𝑧 = 2 (or) | 𝑧 βˆ’ 2 | < 1 Put 𝑧 βˆ’ 2 = 𝑒 β‡’ 𝑧 = 𝑒 + 2 β‡’ | 𝑧 βˆ’ 2 | < 1 β‡’ | 𝑒 | < 1 Now 𝑓 ( 𝑧 ) = + 1 2 3 ( 𝑒 + 3 ) 3( 𝑒 ) = 1 3((3)(1+ u ⁄ 3 )) + 2 3(u) 1 ( u βˆ’ 1 2 = 1 + ⁄ ) + 9 3 3(u) 9 1 u 3 3 u 2 = [1 βˆ’ + [ ] + β‹― ] + 2 3(u) 1 9 = [1 βˆ’ 3 ( z βˆ’ 2 ) ( z βˆ’ 2 ) 3 2 + [ ] + β‹― ] + 2 3 ( z βˆ’ 2 ) = 9 n ( z βˆ’ 2 ) n 1 βˆ‘ ∞ n=0 βˆ’1 2 ( ) [ ] + 3 3 ( z βˆ’ 2 ) 𝒛(π’›βˆ’πŸ)(𝒛+𝟏) Example: Expand the Laurent’s series about for 𝒇 ( 𝒛 ) = πŸ”π’›+πŸ“ in the region 𝟏 < | 𝒛 + 𝟏 | < 3 Solution: C o n s i d e r 6 𝑧 + 5 𝐡 = 𝐴 + + 𝑐 𝑧(π‘§βˆ’2)(𝑧+1) 𝑧 π‘§βˆ’2 𝑧+ 1 β‡’ 6𝑧 + 5 = 𝐴 ( 𝑧 βˆ’ 2 )( 𝑧 + 1 ) + 𝐡𝑧 ( 𝑧 + 1 ) + 𝐢𝑧(𝑧 βˆ’ 2) Put 𝑧 = 0, we get 5 = 𝐴(βˆ’2)(1) Complex calculus

β‡’ 𝐴 = βˆ’5 2 Put 𝑧 = βˆ’ 1 we get βˆ’11 = 𝐢 ( βˆ’1 ) (βˆ’3) β‡’ 𝐢 = βˆ’ 11 3 Put 𝑧 = 2 we get 17 = 𝐡 ( 2 ) (3) β‡’ 𝐡 = 17 6 ∴ 𝑓 ( 𝑧 ) = βˆ’5 + βˆ’ 1 7 11 2𝑧 6(π‘§βˆ’2) 3(𝑧+ 1) Given region 1 < | 𝑧 + 1 | < 3 Put 𝑧 + 1 = 𝑒 β‡’ 𝑧 = 𝑒 βˆ’ 1 (𝑖. 𝑒) 1 < | 𝑒 | < 3 N o w 𝑓 ( 𝑧 ) = + βˆ’5 17 βˆ’ 11 2 ( 𝑒 βˆ’ 1 ) 6( 𝑒 βˆ’ 3 ) 3 𝑒 = βˆ’ 5 1 𝑒 2𝑒(1βˆ’ ) + 𝑒 17 βˆ’ 11 6(βˆ’3)(1βˆ’ 3 ) 3𝑒 βˆ’5 [ 2 𝑒 𝑒 17 1 8 3 1 βˆ’1 𝑒 βˆ’1 = 1 βˆ’ ] βˆ’ [ 1 βˆ’ ] βˆ’ 11 3 𝑒 βˆ’ 5 2 𝑒 𝑒 𝑒 1 2 1 17 18 𝑒 3 3 𝑒 2 = [1 + + [ ] + β‹― ] βˆ’ [ 1 + + [ ] + β‹― ] βˆ’ 11 3 𝑒 = βˆ’ 5 2( 𝑧 + 1 ) [1 + 1 1 ( 𝑧 + 1 ) ( 𝑧 + 1 ) 2 17 18 + [ ] + β‹― ] βˆ’ [ 1 + 3 3 (𝑧+1) (𝑧+1) 2 + [ ] + β‹― ] βˆ’ 11 3(𝑧+1) βˆ’ 5 = 2( 𝑧 + 1 ) 1 ( 𝑧 + 1 ) 𝑛 [ ] βˆ’ 18 11 ] βˆ’ 3 3( 𝑧 + 1 ) 𝑛 17 βˆ‘ ∞ (𝑧+1) 𝑛=0 [ βˆ‘ ∞ 𝑛 = ICEEM,AURANGABAD Complex calculus