Lecture 03 special products and factoring

26,455 views 41 slides Nov 10, 2014
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

Special Products


Slide Content

Grace Christian College Special Products and Factoring

Multiply: a Monomial and a Polynomial Multiply each polynomial term by that monomial: Positive numbers – law of distribution 3x 2 (6xy + 3y 2 ) 3x 2 (6xy) + 3x 2 (3y 2 ) 18x 3 y + 9x 2 y 2 Negative coefficients – be careful! -2ab 2 (3bz – 2az + 4z 3 ) -2ab 2 (3bz) – ( -2ab 2 )(2az) + ( -2ab 2 )(4z 3 ) -6ab 2 z + 4a 2 b 2 z – 8ab 2 z 3 Number following polynomial – other distributive law (2x 3 – 3x 2 – 5)( 3x ) 3x (2x 3 ) – ( 3x )(3x 2 ) – ( 3x )(5) 6x 4 – 9x 3 – 15x

Multiply: Two Polynomials Horizontal Method: (use the distributive property repeatedly) ( 2a + b )(3a – 2b) = ( 2a + b )(3a) – ( 2a + b )(2b) = 6a 2 + 3ab – (4ab + 2b 2 ) = 6a 2 + 3ab – 4ab – 2b 2 = 6a 2 – ab – 2b 2 Vertical Method: 3x 2 + 2x – 5 4x + 2 Multiply top by rightmost 6x 2 + 4x – 10 Then by term to the left 12x 3 + 8x 2 – 20x____ Lastly, add like terms 12x 3 + 14x 2 – 16x – 10

Concept: Similar Binomials Any pair of binomials with matching variable parts When multiplied, they produce a trinomial or binomial Examples:

The FOIL Method Useful for Multiplying Two Similar Binomials (x + 8)(x - 5) = x 2 – 5x + 8x – 40 (4t 2 + 5)(3t 2 - 2) = 12t 4 – 8t 2 + 15t 2 – 10 (y – 8)(y 2 + 5) = y 3 + 5y – 8y 2 – 40

Practice Using the FOIL Method in Your Head If the polynomials are similar, combine the middle terms (x + 2)(x – 5) = x 2 – 3x – 10 (2y + 3)(4y + 1) = 8y 2 + 14y + 3 (m – 3n)(m – 2n) = m 2 – 5mn + 6n 2 (2x + 3y 2 )(x – 7y 2 ) = 2x 2 – 11xy 2 – 21y 4 (a + b)(c + d) = ac + ad + bc + bd

Multiplying 3 or more Polynomials Use same technique as you use for numbers: Multiply any 2 together and simplify the temporary product Multiply that temporary product times any remaining polynomial and simplify -2r(r – 2s)(5r – s) = (use foil on the binomials) -2r(r 2 – 11rs + s 2 ) = (distribute the monomial) -2r 3 – 22r 2 s – 2rs 2

The Product of Conjugates ( F + L )( F – L ) = F 2 – L 2 The middle term disappears ONLY when the binomials are conjugates: identical except for different operations Multiplying these is easier than using FOIL! (x + 4)(x – 4) = x 2 – 4 2 = x 2 – 16 (5 + 2w)(5 – 2w) = 25 – 4w 2 (3x 2 – 7)(3x 2 + 7) = 9x 4 – 49 (-4x – 10)(-4x + 10) = 16x 2 – 100 (6 + 4y)(6 – 4x) = use the foil method = 36 – 24x + 24y – 16xy

Squaring a Binomial Sum ( F + L )( F + L ) = F 2 + 2 F L + L 2 Square the 1 st term Multiply 1 st times 2 nd , double it, add it Square the 2 nd term Try: (2x + 3) 2 (2x) 2 + 2(6x) + 3 2 4x 2 + 12x + 9 (½x + 5) 2 (½x) 2 + 2(5x/2) + 5 2 ¼x 2 + 5x + 25

Squaring a Binomial Difference ( F – L )( F – L ) = F 2 – 2 F L + L 2 Square the 1 st term Multiply 1 st times 2 nd , double it, subtract it Square the 2 nd term and add it Try: (3x - 4) 2 = (3x) 2 – 2(12x) + 4 2 = 9x 2 – 24x + 16 (5a – 2b) 2 = (5a) 2 – 2(10ab) + (2b) 2 = 25a 2 – 20ab + 4b 2

Practice Binomial Conjugates and Squares ( F + L )( F – L ) = F 2 – L 2 ( F + L ) 2 = F 2 + 2 FL + L 2 ( F – L ) 2 = F 2 – 2 FL + L 2 (x + 3)(x – 3) = x 2 – 9 (2y – 5)(2y – 5) = 4y 2 – 20y + 25 (m + 3n) 2 = m 2 + 6mn + 9n 2 (2y – 5)(2y + 5) = 4y 2 – 25 (a + b)(a + b) = a 2 + 2ab + b 2 (3x – 7y) 2 = 9x 2 – 42xy + 49y 2

Find the product of the following:

Find the product 

Find the product  Use the FOIL method

Find the product 

Find the product  .

Find the product  Use Dist. Prop. twice

Find the product 

Factoring by Grouping video

Factoring Trinomials Video1 video2

Perfect Square Trinomial video

Perfect Square Factoring video

FACTORING IS THE REVERSE of multiplying.   2 x ² + 9 x − 5 (2 x   ?)( x   ?) (2 x   5)( x   1) or with  x -- (2 x   1)( x   5) ? (2 x − 1)( x + 5) = 2 x ² + 9 x − 5.

Problem 1.   Place the correct signs to give the middle term. a)  2 x ² + 7 x − 15 = (2 x − 3)( x + 5) b)  2 x ² − 7 x − 15 = (2 x + 3)( x − 5)  c)  2 x ² − x − 15 = (2 x + 5)( x − 3)  d)  2 x ² − 13 x + 15 = (2 x − 3)( x − 5) 

Problem 2.   Factor these trinomials. a)  3 x ² + 8 x + 5  = (3 x + 5)( x + 1) b)  3 x ² + 16 x + 5  = (3 x + 1)( x + 5) c)  2 x ² + 9 x + 7  = (2 x + 7)( x + 1) d)  2 x ² + 15 x + 7  = (2 x + 1)( x + 7) e)  5 x ² + 8 x + 3  = (5 x + 3)( x + 1) f)  5 x ² + 16 x + 3  = (5 x + 1)( x + 3)

Problem 3.    Factor these trinomials. a)  2 x ² − 7 x + 5  = (2 x − 5)( x − 1) b)  2 x ² − 11 x + 5  = (2 x − 1)( x − 5) c)  3 x ² + x − 10   = (3 x − 5)( x + 2 ) d)  2 x ² − x − 3   = (2 x − 3)( x + 1) e)  5 x ² − 13 x + 6  = (5 x − 3)( x − 2)

Factor completely  6 x 8 + 30 x 7 + 36 x 6 .  To factor completely means to first remove any common factor. 6 x 8 + 30 x 7 + 36 x 6 = 6 x 6 ( x ² + 5 x + 6).  Now continue by factoring the trinomial: = 6 x 6 ( x + 2)( x + 3).

Problem 4.   Factor completely.  First remove any common factors. a)   x 3 + 6 x ² + 5 x   = x ( x 2 + 6 x + 5) = x ( x + 5)( x + 1) b)   x 5 + 4 x 4 + 3 x 3   = x 3 ( x 2 + 4 x + 3) = x 3 ( x + 1)( x + 3) c)   x 4 + x 3 − 6 x ²  = x ²( x ² + x − 6) = x ²( x + 3)( x − 2) d)  4 x ² − 4 x − 24  = 4( x ² − x − 6) = 4( x + 2)( x − 3) e)  2 x 3 − 14 x ² − 36 x   = 2 x ( x 2 − 7 x − 18) = 2 x ( x + 2)( x − 9) f)  12 x 10 + 42 x 9 + 18 x 8   = 6 x 8 (2 x ² + 7 x + 3) = 6 x 8 (2 x + 1)( x + 3).

Quadratics in different arguments Here is the form of a quadratic trinomial with argument x : ax ² + bx + c . The argument is whatever is being squared.   x is being squared.   x is called the argument.  The argument appears in the middle term. a , b , c are called constants.   In this quadratic, 3 x ² + 2 x − 1, the constants are  3, 2, −1.

Now here is a quadratic whose argument is x 3 : 3 x 6 + 2 x 3 − 1. x 6 is the square of x 3 .  

Now, since the quadratic with argument x can be factored in this way: 3 x ² + 2 x − 1 = (3 x − 1)( x + 1), then the quadratic with argument x 3 is factored in the same way: 3 x 6 + 2 x 3 − 1 = (3 x 3 − 1)( x 3 + 1). Whenever a quadratic has constants 3, 2, −1, then for any argument, the factoring will be (3 times the argument − 1)(argument + 1).

Problem 5.   Multiply out each of the following, which have the same constants, but different argument. c)   ( y 6 + 3)( y 6 − 1)   = y 12 + 2 y 6 − 3 d)   ( x 5 + 3)( x 5 − 1)   = x 10 + 2 x 5 − 3 a)   ( z + 3)( z − 1) = z ² + 2 z − 3 b)   ( y + 3)( y − 1) = y ² + 2 y − 3

Problem 6.     Factor each quadratic. a)   x ² − 6 x + 5   = ( x − 1)( x − 5) b)   z ² − 6 z + 5   = ( z − 1)( z − 5) c)   x 8 − 6 x 4 + 5   = ( x 4 − 1)( x 4 − 5) d)   x 10 − 6 x 5 + 5   = ( x 5 − 1)( x 5 − 5) e)   x 6 y 6 − 6 x 3 y 3 + 5   = ( x 3 y 3 − 1)( x 3 y 3 − 5)

Problem 7.   Factor each quadratic. a)   x 4 − x ² − 2 = ( x ² − 2)( x ² + 1) b)   y 6 + 2 y 3 − 8 = ( y 3 + 4)( y 3 − 2) c)   z 8 + 4 z 4 + 3 = ( z 4 + 1)( z 4 + 3) d)  2 x 10 + 5 x 5 + 3 = (2 x 5 + 3)( x 5 + 1) e)   x 4 y ² − 3 x ² y − 10 = ( x ² y + 2)( x ² y − 5) f)  cos² x − 5 cos x + 6 = (cos x − 3)(cos x − 2)

Additional

Reference http://cnx.org/content/m21901/latest/

The following are some of the products which occur frequently in Mathematics.
Tags