Lecture 04.jsjsjsjsjsjsjdjjjdjsjdjdjdjddhdjd

MehboobKhan52 25 views 74 slides Jun 22, 2024
Slide 1
Slide 1 of 74
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74

About This Presentation

Trusses


Slide Content

COMSATS University Islamabad,Abbottabad
CEE 207:Basic StructureAnalysis
Module04
Determinate TrussAnalysis
Analysis of pin-connected determinate
frames (Trusses) and to measure the Axial forces.
By:
Engr. Muhammad Jamal Butt
CivilEngineeringDepartment
CUI, Abbottabad
[email protected]

TopicstobeCovered
•Trusses
•CommonTypesofTrusses
•TrussAnalysisAssumptions
•ClassificationofCoplanarTrusses
•DeterminacyofCoplanarTrusses
•StabilityofCoplanarTrusses
•MethodofJoints
•Zero-ForceMembers
•MethodofSections

Trusses:
Atrussisastructurecomposedofslendermembersjoinedtogetherat
theirendpoints.
Planartrusseslieinasingleplane.
Typically,thejointconnectionsareformedbyboltingorweldingthe
endmemberstogethertoa commonplate,calleda gussetplate.
Analysisof StaticallyDeterminateTrusses
gussetplate

Trusses:
Analysisof StaticallyDeterminateTrusses

Trusses:
Analysisof StaticallyDeterminateTrusses

TypesofTrusses:
1.Rooftrusses:
Ingeneral,theroofloadistransmittedtothetrussbyaseriesof
purlins.
The roof truss along with its supporting columns is termed a bent.
Thespacebetweenbentsiscalleda bay.
Analysisof StaticallyDeterminateTrusses
topcord
roof
purlins
knee
brace
bottom
cord
span bay

TypesofTrusses:
1.Rooftrusses:
Analysisof StaticallyDeterminateTrusses
Howetruss Pratttruss
ModifiedHowetrussWarrentruss
saw-toothtruss
Finktruss
three-hingedarch

TypesofTrusses:
2.Bridgetrusses:
Theloadistransmittedbythedecktoaseriesofstringersandthento
asetoffloor beams.
Thefloorbeamsaresupportedby twoparalleltrusses.
Thesupportingtrussesareconnectedtopandbottombylateral
bracing.
Additionalstabilitymaybeprovidedbyportaland sway bracing
Analysisof StaticallyDeterminateTrusses

TypesofTrusses:
2.Bridgetrusses:
Analysisof StaticallyDeterminateTrusses
topcord
deck
stringers
portal
endpost
swaybracing
toplateralbracing
Portalbracing
panel
floorbeam
bottomcord

TypesofTrusses:
2.Bridgetrusses:
Analysisof StaticallyDeterminateTrusses

TypesofTrusses:
2.Bridgetrusses:
Analysisof StaticallyDeterminateTrusses
troughPratttruss WarrentrussHowetruss
deckPratttruss parkertruss
(Pratttrusswithcurvedchord)
BaltimoretrussKtruss

TrussAnalysisAssumptions:
Twoimportantassumptionswillbemadeinordertoidealizethetruss.
1.Themembersarejoinedtogetherbysmoothpins.
Incaseswhereboltedorweldedjointconnectionsareused,this
assumptionisgenerallysatisfactoryprovidedthecenterlinesofthe
joiningmembersareconcurrentatapoint,asinFigure.
Analysisof StaticallyDeterminateTrusses
gussetplate

TrussAnalysisAssumptions:
Twoimportantassumptionswillbemadeinordertoidealizethetruss.
1.Themembersarejoinedtogetherbysmoothpins.
Theactualconnectionsdogivesomerigiditytothejointandthisin
turnintroducesbendingoftheconnectedmemberswhenthetrussis
subjectedtoaload.
The bending stress developed in the members is called secondary
stress,whereasthestressinthemembersoftheidealizedtruss,having
pin-connectedjoints,iscalledprimarystress.
Asecondarystressanalysisofatrusscanbeperformed usinga
computer.
Analysisof StaticallyDeterminateTrusses

TrussAnalysisAssumptions:
Twoimportantassumptionswill bemadeinordertoidealizethetruss.
2.Allloadingsareappliedatthejoints.
Inmostsituations,suchasforbridgeandrooftrusses,thisassumption
istrue.
Frequentlyintheforceanalysis,theweightofthemembersis
neglected,sincetheforcesupportedbythemembersislargein
comparisonwiththeirweight.
Iftheweightistobe includedin theanalysis,itisgenerallysatisfactory
to apply it as a vertical force, half of its magnitude applied at each end
ofthemember.
Analysisof StaticallyDeterminateTrusses

TrussAnalysisAssumptions:
Becauseofthesetwoassumptions,eachtrussmemberactsasanaxial
forcemember,andthereforetheforcesactingattheendsofthemember
mustbedirectedalongtheaxisofthemember.
Iftheforcetendstoelongatethemember,itisatensileforce(T),
whereasiftheforcetendstoshortenthemember,itisacompressive
force(C).
Intheactualdesignofatrussitisimportanttostatewhethertheforceis
tensileorcompressive.
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
1.SimpleTruss
Thesimplestframeworkthatisrigidorstableisatriangle.
Therefore,asimpletrussisconstructedstartingwithabasictriangular
elementandconnectingtwomemberstoformadditionalelements.
Aseachadditionalelementoftwomembersisplacedonatruss,the
numberofjointsisincreasedbyone.
Mostoften,compressionmembersmustbemadethickerthantension
members,becauseofthebucklingorsuddeninstabilitythatmayoccur
incompressionmembers.
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
1.SimpleTruss
Thesimplestframeworkthatisrigidorstableisa triangle.
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
2.CompoundTruss
Thistrussisformedby connectingtwoormoresimpletrussestogether.
Thistypeof trussisoftenusedforlargespans.
Therearethreewaysinwhich simpletrussesmaybe connectedto form
acompoundtruss:
i.Trussesmaybeconnectedby acommonjointandbar.
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
2.CompoundTruss
Therearethreewaysinwhich simpletrussesmaybe connectedto form
acompoundtruss:
ii.Trussesmaybejoinedbythreebars.
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
2.CompoundTruss
Therearethreewaysinwhich simpletrussesmaybe connectedto form
acompoundtruss:
iii.Trussesmaybe joinedwherebarsof a largesimple truss, calledthe
main truss, have been substituted by simple trusses, called secondary
trusses
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
3.ComplexTruss
Thisis atrussthatcannotbeclassifiedasbeingeithersimple or
compound.
Analysisof StaticallyDeterminateTrusses

ClassificationofCoplanarTrusses:
Analysisof StaticallyDeterminateTrusses

DeterminacyofCoplanarTrusses:
•Since all the elements of a truss are two-force members, the moment
equilibriumisautomaticallysatisfied.
•Thereforetherearetwo equationsofequilibriumforeachjoint,j, in
a truss. If r is the number of reactions and b is the number of
members
Analysisof StaticallyDeterminateTrusses
Inparticular,thedegreeofindeterminacyisspecifiedby thedifferenceinthe
numbers(b+r) -2j.

Analysisof StaticallyDeterminateTrusses
DeterminacyofCoplanarTrusses:
Example01:

Analysisof StaticallyDeterminateTrusses
DeterminacyofCoplanarTrusses:
Example02:

Analysisof StaticallyDeterminateTrusses
DeterminacyofCoplanarTrusses:
Example03:
S.I=b+r–2j
S.I=14+4–16=2°
S.I=21+3–20=4°

StabilityofCoplanarTrusses:
•Ifb+r<2j,atrusswillbeunstable,whichmeansthestructurewill
collapsesincetherearenotenoughreactionstoconstrainallthe
joints.
•Atrussmayalsobeunstableifb+r>2j.Inthiscase,stabilitywill
bedeterminedbyinspection.
Analysisof StaticallyDeterminateTrusses

Analysisof StaticallyDeterminateTrusses
StabilityofCoplanarTrusses:
Example04:

StabilityofCoplanarTrusses:
Externalstability–
Astructure(truss)isexternallyunstableifitsreactionsareconcurrent
orparallel.
Analysisof StaticallyDeterminateTrusses

StabilityofCoplanarTrusses:
Internalstability–
•Maybedeterminedbyinspectionofthearrangementofthetruss
members.
•Asimpletrusswillalwaysbeinternallystable.
•Thestabilityofacompoundtrussisdeterminedbyexamininghow
thesimple trussesareconnected
•Thestabilityofacomplextrusscanoftenbedifficulttodetermineby
inspection.
Analysisof StaticallyDeterminateTrusses

StabilityofCoplanarTrusses:
Internalstability–
•Ingeneral,thestabilityofanytrussmaybecheckedbyperforminga
completeanalysisofthestructure.Ifauniquesolutioncanbefound
forthesetofequilibriumequations,thenthetrussisstable.
Analysisof StaticallyDeterminateTrusses

Analysisof StaticallyDeterminateTrusses
StabilityofCoplanarTrusses:
Internalstability–

Example05:
Classifyeachofthetrussesinthefigurebelowasstable,unstable,
staticallydeterminate,orstaticallyindeterminate.Thetrussesare
subjectedtoarbitraryexternalloadingsthatareassumedtobeknown
andcanactanywhereonthetrusses.
Analysisof StaticallyDeterminateTrusses

Example05:
Solution:
Analysisof StaticallyDeterminateTrusses
Externallystable,sincethereactions
arenotconcurrentorparallel.Since
b=19,r=3,j=11,thenb+r=2j
or22=22.Therefore,thetrussis
staticallydeterminate.
Byinspectionthetrussisinternally
stable.
Externallystable.Sinceb=15,r=4,
j = 9, then b + r > 2j or 19 > 18. The
truss is statically indeterminate to the
firstdegree.By inspectionthetrussis
internallystable.

Example05:
Solution:
Analysisof StaticallyDeterminateTrusses
Externallystable.Sinceb=9,r= 3,
j=6,thenb+r=2jor12=12.The
truss is statically determinate. By
inspection the truss is internally
stable.
Externallystable.Sinceb=12,r =3,
j = 8, then b + r < 2j or 15 < 16. The
trussisinternallyunstable.

Analysis ofDeterminateTrusses
Analysisof StaticallyDeterminateTrusses

MethodofJoints:
Ifatrussisinequilibrium,theneachofitsjointsmustbein
equilibrium.
Themethodofjointsconsistsofsatisfyingtheequilibriumequations
for forcesactingon eachjoint.
Analysisof StaticallyDeterminateTrusses

MethodofJoints:
Recall,thatthelineofactionof aforceactingon a jointisdetermined
bythegeometryof thetrussmember.
Thelineofactionisformedbyconnectingthetwoendsofeach
memberwitha straightline.
Sincedirectionof theforceisknown, theremainingunknown isthe
magnitudeoftheforce.
Analysisof StaticallyDeterminateTrusses

MethodofJoints:
Procedurefor analysis:
Thefollowingisaprocedureforanalyzingatrussusingthemethodof
joints:
1.Determinethesupportreactions
2.Drawthefreebodydiagramforeachjoint.
Ingeneral,assumealltheforcememberreactionsaretension(thisis
notarule,however,itishelpfulinkeepingtrackoftensionand
compressionmembers).
3.Writetheequationsofequilibriumforeachjoint,
Analysisof StaticallyDeterminateTrusses

MethodofJoints:
Procedureforanalysis:
Thefollowingisaprocedureforanalyzingatrussusingthemethodof
joints:
4.Ifpossible,beginsolvingtheequilibriumequationsatajointwhere
onlytwounknownreactionsexist.Workyourwayfromjointtojoint,
selectingthenewjointusingthecriterionoftwounknownreactions.
5.Solvethejointequationsofequilibriumsimultaneously,typically
usingacomputeroranadvancedcalculator.
Analysisof StaticallyDeterminateTrusses

Analysisof StaticallyDeterminateTrusses
r=3
b=3
j=3
r+b=2xj
3+3=2x3
6=6,StaticallyDeterminate
2m
2m
45
o
A
MethodofJoints:
Example06:Analyzethefollowingtruss.
B
500N
C

Analysisof StaticallyDeterminateTrusses
Method of Joints:
Example 06:
Solution:Reactions

Analysisof StaticallyDeterminateTrusses
Method of Joints:
Example 06:
Solution:Reactions
2m
45
o
B
500N
2m
C
C
y=500N
A
A
x=500N
A
y=500N

MethodofJoints:
Example06:
Solution:Equilibriumatjoint“A”
Analysisof StaticallyDeterminateTrusses
2m
45
o
B
500N
2m
A
C
C
y=500N
A
x=500N
A
y=500N

MethodofJoints:
Example06:
Solution:Equilibriumatjoint“B”
Analysisof StaticallyDeterminateTrusses
2m
45
o
B
500N
2m
A
C
C
y=500N
A
x=500N
A
y=500N

Analysisof StaticallyDeterminateTrusses
F
ac=500lb
F
ab=500lb
F
bc=707.2lb
45
o
A
MethodofJoints:
Example06:
Solution:FinalAnalyzedStructure
B
500N
C
C
y=500N
A
x=500N
A
y=500N

MethodofJoints:
Example 07: Determine the force in each member of the truss shown
inthefigure.
Analysisof StaticallyDeterminateTrusses

MethodofJoints:
Example07:
Solution:Determinacy
Analysisof StaticallyDeterminateTrusses
r=3
b=9
j=6
r+b=2xj
3+9=2x6
12=12,
StaticallyDeterminate

Analysisof StaticallyDeterminateTrusses
MethodofJoints:
Example07:
Solution:Reactions
∑F
x=0=A
x
A
x= 0k
∑M
A=0= –12x20 –24x40+D
yx60
D
y=20k
∑M
D= 0 = –A
yx60+12x40+24x20
A
y=16k

Analysisof StaticallyDeterminateTrusses
F
AB
AB
Fcos(36.87)
F
ABsin(36.87)
MethodofJoints:
Example07:
Solution:Equilibriumatjoint“A”
∑F
y=0 =A
y+F
ABsin(36.87)
F
AB=–26.67k
∑F
x=0=A
x+F
AF+F
ABcos(36.87)
F
AF=+21.34k
F
AF

Analysisof StaticallyDeterminateTrusses
F
AF=21.34k F
FE
F
FB
MethodofJoints:
Example07:
Solution:Equilibriumatjoint“F”
∑F
y=0=–12+F
FB
F
FB =+12k
∑F
x=0= –F
AF +F
FE
F
FE =+21.34k

MethodofJoints:
Example07:
Solution:Equilibriumatjoint“B”
Analysisof StaticallyDeterminateTrusses
F
BC
F
BF
F
BE
36.87
o
53.13
o 36.87
o
BE
Fcos(36.87)
=12 k
F
BEsin(36.87)
F
BAsin(53.13)
F
BA=26.67k
F
BAcos(53.13)
∑F
y=0
0=–12–F
BEsin(36.87)+F
ABcos(53.13)
F
BE=+6.7k
∑F
x=0
0 = F
BE + F
BEcos(36.87) + F
AB sin(53.13)
F
BC=–26.67k

Analysisof StaticallyDeterminateTrusses
F
DCcos(36.87)
F
DC=33.33k
F
DC sin(36.87)
F
CB
F
CE
MethodofJoints:
Example07:
Solution:Equilibriumatjoint“C”
∑F
x=0 = F
CB –F
DCcos(36.87)
F
DC=33.33k
∑F
y=0=–F
C E+F
DCsin(36.87)
F
CE=19.99k

MethodofJoints:
Example07:
Solution:Equilibriumatjoint“C”
Analysisof StaticallyDeterminateTrusses
ED
F=26.67k
EC
F=19.99k
EF
F=21.34k
F
EBsin(36.87)
F
EB
F
EBcos(36.87)
∑F
y=0 =–24 +F
EC+F
EBsin(36.87)
F
EB=6.66k
∑F
x=0 =–F
EF +F
ED–F
EBcos(36.87)
EB
F=6.66k

MethodofJoints:
Example07:
Solution:FinalAnalyzedStructure
Analysisof StaticallyDeterminateTrusses
26.67k
21.33k
12k
21.34k
6.67k
26.67k
33.34k
19.99k
26.67k
16k
20k
0k

Zero-ForceMembers:
Trussanalysisusingthemethodofjointsisgreatlysimplifiedifoneis
abletofirstdeterminethosemembersthatsupportnoloading.
Thesezero-forcemembersmaybenecessaryforthestabilityofthe
trussduringconstructionandtoprovidesupportiftheappliedloading
ischanged.
Thezero-forcemembersofatrusscangenerallybedeterminedby
inspectionofthejoints.
Analysisof StaticallyDeterminateTrusses

Zero-ForceMembers:
Thezero-forcemembersofatrusscangenerallybedeterminedby
inspectionof thejointsand theyareoccurintwocases,
Case1:
Iftwo membersareconnectedatajointandthereisno externalforce
appliedto thejoint
Analysisof StaticallyDeterminateTrusses

Zero-ForceMembers:
Thezero-forcemembersofatrusscangenerallybedeterminedby
inspectionof thejointsand theyareoccurintwocases,
Case2:
Ifthreemembersareconnectedatajointandthereisnoexternalforce
appliedto thejointand twoofthemembersarecollinear.
Analysisof StaticallyDeterminateTrusses

Zero-ForceMembers:
Example08:Indicateallthemembersofthetrussshowninthefigure
belowthathavezeroforce.
Analysisof StaticallyDeterminateTrusses
P
A
B
C
DE
D
yE
y

Zero-ForceMembers:
Example08:
Solution:
Analysisof StaticallyDeterminateTrusses
F
CD
F
CB
JointC:
C
F
x= 0:F
CB=0
F
y= 0:F
CD=0
+
+
F
AEA

JointA:
F
AB
y
F=0:
AB AB
Fsin= 0,F=0+
F
x=0:F
AE+0=0,F
AE= 0
+
P
A
B
C
DE
D
yE
y
Zeroforcemember
areshownwithdash
lines

Zero-ForceMembers:
Example09:Indicateallthemembersofthetrussshowninthefigure
belowthathavezeroforce.
Analysisof StaticallyDeterminateTrusses
P
A B
C
D
EFG
H

Zero-ForceMembers:
Example09:
Solution:
Analysisof StaticallyDeterminateTrusses
Zeroforcemember
areshownwithdash
lines
A
x
A
x
G
x
P
A B
C
D
EFG
H
0
F
EC
F
EF
E
F
y=0:+
F
DCsin=0,F
DC=0
F
x=0:
+
F
DE+0=0,F
DE=0
y
D

x
F
DC
F
DE
JointD
F
EF=0
P
F
x=0:
+
JointE

Zero-ForceMembers:
Example09:
Solution:
Analysisof StaticallyDeterminateTrusses
Zeroforcemember
areshownwithdash
lines
A
x
A
x
G
x
P
A B
C
D
EFG
H
JointH
F
HF
F
HA
F
HB
y
H
F
y=0:
+
x
F
HB=0
JointG
G
G
x F
GF
F
GA
F
y=0:+
F
GA=0

MethodofSections:
Iftheforcesinonlyafewmembersofatrussaretobedetermined,the
methodofsectionsisgenerallythemostappropriateanalysis
procedure.
Themethodofsectionsconsistsofpassinganimaginarylinethrough
thetruss,cuttingitintosections.
Eachimaginarysectionmustbeinequilibriumiftheentiretrussisin
equilibrium.
Analysisof StaticallyDeterminateTrusses

MethodofSections:
Procedureforanalysis:
Thefollowingisaprocedureforanalyzingatrussusingthemethodof
sections:
1.First,ifnecessary,determinethesupportreactionsfortheentire
truss.
2.Next,makeadecisiononhowthetrussshouldbe“cut”intosections
anddrawthecorrespondingfree-bodydiagrams.Ingeneral,thecut
passesthroughnotmorethanthreemembersinwhichtheforcesare
unknown.
Analysisof StaticallyDeterminateTrusses

MethodofSections:
Procedureforanalysis:
Thefollowingisaprocedureforanalyzingatrussusingthemethodof
sections:
3.Trytoapplythethreeequationsofequilibriumsuchthat
simultaneoussolutionisnotrequired.
Momentsshouldbesummedaboutpointsthatlieattheintersectionof
thelinesofactionoftwounknownforces,sothattheremainingforce
maybedetermined.
Eachimaginarysectionmustbeinequilibriumiftheentiretrussisin
equilibrium.
Analysisof StaticallyDeterminateTrusses

Analysisof StaticallyDeterminateTrusses
r=3
b=3
j=3
r+b=2xj
3+3=2x3
6=6,
StaticallyDeterminate
100N
A
B C D
EFG
2m
2m 2m 2m
E
x
D
x
MethodofSections:
Example 10: Determine the force in members BC, GC and GF of the
trussshowninfig below usingmethodofsections.
D
y

MethodofSections:
Example10:
Solution:Typicallythesectionwiththefewestforcesorwithsection
withthemostconvenientgeometryisselected.
•Inthisexampletheleft-handside.
•Applythethreeequationsof
equilibriumtothesection.
•Ifpossible,attempttodevelop
anequationinjustoneunknown.
•Lookforpointswherethelines
of action of several forces are
concurrent.
Analysisof StaticallyDeterminateTrusses
100N
A
B C D
EFG
2m
2m 2m 2m
E
x
D
x
D
y
a
a

MethodofSections:
Example10:
Solution:Typicallythesectionwiththefewestforcesorwithsection
withthemostconvenientgeometryisselected.
Analysisof StaticallyDeterminateTrusses
100N
A
G
2m
45
o
F
GF
F
GC
B F
BC
C
+
+M
G=
100(2)–F
BC(2) =0,F
BC=100N(T)
F
y=0:
-100+F
GCsin45
o
=0,F
GC=141.42N(T)
+M
C=
100(4)–F
GF(2)=0,F
GF=200N (C)

Analysisof StaticallyDeterminateTrusses
A
x=0
A
y=9kN
E
y=7kN
A
B C D
E
F
MethodofSections:
Example 11: Determine the force in members GF and GD of the truss
shown in the figure below. State whether the members are in tension or
compression.Thereactionsatthesupportshavebeencalculated.
G
H
6kN8kN 2kN
3 m3m 3m 3m
3m
4.5m

MethodofSections:
Example11:
Solution:Typicallythesectionwiththefewestforcesorwithsection
withthemostconvenientgeometryisselected.
Analysisof StaticallyDeterminateTrusses
a
a
A
x=0
A
y=9kN
E
y=7kN
A
B C D
E
F
G
H
6kN8kN 2kN
3 m3m 3m 3m
3m
4.5m

MethodofSections:
Example11:
Solution:Equilibriumatsectionaa.
Analysisof StaticallyDeterminateTrusses
E=7kN
E
F
Sectiona-a
F
FG
F
DG
F
DC
D
2 kN
y
3m 3m
26.6
o
O
26.6
o
56.3
o
+∑M
D=0:
FG
Fsin26.6
o
(6)+7(3)=0,
F
FG=-7.82kN(C)
+
O
∑M=0:
-7(3)+2(6)+F
DGsin56.3
o
(6)=0,
F
DG=1.80kN(C)

References
•StructuralAnalysisby R.C. Hibbeler
•OnlineCivilEngineeringblogs
Tags