Fluid Mechanics 1 –
Arab Academy for Science, Technology
and Maritime Transportation
Dr. Aly Hassan Elbatran
Associate Professor [email protected] [email protected]
Course Assistant Lecturer:
Eng. Islam mohamed
Lecture 4:
Hydrostatic Forces on Submerged
PlaneSurfaces
Fluid Mechanics 1
Hydrostatic forces on submerged plane surfaces
Whenanalyzinghydrostaticforcesonsubmergedsurfaces,theatmospheric
pressurecanbesubtractedforsimplicitywhenitactsonbothsidesofthe
structure.
Effect of atmospheric pressure on the resultant force acting on a plane vertical wall.
General submerged plane
General submerged plane
Thetotalareaismadeupofmanyelementalareas.
Theforceoneachelementalareaisalwaysnormaltothe
surfacebut,ingeneral,eachforceisofdifferentmagnitude
asthepressureusuallyvaries.
WecanfindthetotalorResultantForce,F
R,ontheplane
bysummingupalloftheforcesonthesmallelements.ApApApApF
nn
....
2211
R
A
PdAFR
Hydrostatic forces on SubmergedHorizontal Plane
Surface
•Forahorizontalplanesubmergedinaliquid,thepressure,p,
willbeequalatallpointsofthesurface.
•Thepressureatthebottomofthecontainerisuniformacrossthe
entireareapAFR
Hydrostatic forces on Submerged Horizontal Plane
Surface
•Forahorizontalplanesubmergedinaliquid,thepressure,p,
willbeequalatallpointsofthesurface.
•Thepressureatthebottomofthetankisuniformacrossthe
entireareapAFR h AF R
sinyzh Where:
Given a plane surface AB entirely submerged in the liquid. The surface is
inclined an angle θto the liquid surface. The centroid of area is located at C.
The vertical distance of C below the liquid surface is:
Hydrostaticforces on SubmergedInclinedor Vertical
Plane Surfaces
Pressure at a point at z
below the liquid surface
is:
p(z) =*z
(Gage pressure)
Orin terms of y
(distance along the plate)
pressure at point z is:
p(z) = *y*sin
The differential force
on the differential area
dAis dF(z)
Hydrostatic forces on Submerged Inclined or Vertical
Plane Surfaces
Pressure forces on an elemental area dA:
The differential force on the differential area dAis dF(z)
dAyzdF
dAzzdF
dAzpzdF
yzzp
)(sin
)sin()(
Hydrostaticforces on SubmergedInclinedor Vertical
Plane Surfaces
Where:
Pressure forces on an elemental area dA:
Hydrostatic Pressure Distribution
Hydrostatic forces on Submerged Inclined or Vertical
Plane Surfaces
sin
yp
zp
Thetotalforce(F
R)ontheareawillbeobtainedbyintegratingthe
differentialforceovertheentirearea: dAydFF
R
sin
and(sin )are constants
AyAhF
AhAzF
AyF
AyF
dAyF
ccR
R
R
R
R
sin
sin
sin
sin
c
c
h
y
h
y
ydAyA
dAA
Remark
The total hydrostatic force on a planar inclined surface
Hydrostatic forces on Submerged Inclined or
Vertical Plane Surfaces
The total hydrostatic force on a planar inclined surface
Hydrostatic forces on Submerged Inclined or
Vertical Plane Surfaces
y
R
oftheresultantforcecanbedeterminedbysummation
ofmomentsaroundthexaxis.Thatis,themomentofthe
resultantforcemustequalthemomentofthedistributed
pressureforce,or dAydFF
R
sin
Recallthat: dAyydFyyF
RR
Theintegralinthenumeratoristhesecondmomentofthearea(momentof
inertia),“Ix”.Thus,wecanwrite:
Usingtheparallelaxistheorem:
where“Ixc”.isthesecondmomentoftheareawithrespecttoanaxis
throughitscentroidandparalleltothexaxis.Thus:
So,fromtheaboveEquation,itisclearthattheresultantforcedoesnotpass
throughthecentroid.butfornonhorizontalsurfacesisalwaysbelowit,since
(I
xc/ y
cA) > Zeroc
c
xc
c
c
xc
h
h
I
y
y
I
A
hOr
A
y
RR
The centroid and the centroidal moments of inertia for
some common geometries
kN 101.24
kN )1*2.1(*)]
2
1.2
( [8 * 9.81
kN/m 9.81 and
433
xc
c
c
xc
3
R
R
R
R
wcwR
h
mba
A
h
F
F
AhF
Using the Analytical Method
Hydrostatic forces on submerged plane surfaces
Graphical Solution
(Prism Solution)
Aheavycarplungesintoalakeduringanaccidentandlandsatthebottomofthelakeonits
wheelsasshownintheFigure.Thedooris1.2mheightand1mwide,andthetopedgeof
thedooris8mbelowthefreesurfaceofthewater.Usingtheanalyticalandprismmethod,
determinethehydrostaticforceonthedoorandthelocationofthepressurecenter.
Using the Prism Method
m 61.8)59.02.18( that So
; 59.0
* 24.011 )32.1(*063.7)22.1(*176.94
*)32.1(*)22.1(* 0
kN 24.011
kN 063.7)1*2.1(*2)82.18( * 9.81
kN 176.94kN )1*2.1(*8 * 9.81
2 and ,
21
21
2
1
12211
R
Rstst
ststR
st
st
wstwst
h
mh
h
hFFFM
FFF
F
F
AhhFAhF
Example