Lecture-4-Fluid Statics .ppt

naqi11 559 views 23 slides Sep 07, 2022
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

mechanics


Slide Content

Lecture -4
Fluid Statics

Buoyancy & Stability
Examples of types of Buoyancy Problems:

Introduction:
Wheneverabodyisplacedoveraliquid,eitheritsinksdown
orfloatsontheliquid.
Twoforcesinvolveare:
1.GravitationalForce
2.Up-thrustoftheliquid
IfGravitationforceismorethanUpthrust,bodywillsink.
IfUpthrustismorethanGravitationforce,bodywillfloat.

Archimedes Principle:
“Wheneverabodyisimmersedwhollyorpartially
inafluid,itisbuoyedup(i.eliftedup)byaforce
equaltotheweightofthefluiddisplacedbythe
body.”

Buoyancy:
Abodyinafluid,whetherfloatingorsubmerged,isbuoyed
upbyaforceequaltotheweightofthefluiddisplaced.
“Thetendencyofafluidtoupliftasubmergedbody,because
oftheup-thrustofthefluid,isknownasforceofbuoyancyor
simplybuoyancy.”
Thebuoyantforceactsverticallyupwardthroughthecentroid
ofthedisplacedvolumeandcanbedefinedmathematicallyby
Archimedes’principleasfollows:fluid of volumeDisplaced
fluid of weight Specific
forceBuoyant



d
f
d
V
F
 dfd
VF

Center of Buoyancy:
It is defined as:
“The point, through which the force of buoyancy is supposed
to act.”
As the force of buoyancy is a vertical force and is equal to the
weight of the fluid displaced by the body, the centre of
buoyancy will be the centre of gravity of the fluid displaced.
In other words, the centre of buoyancy is the centre of area of
the immersed section.

7
Problem-1
Find the volume of the water displaced and position of
centre of buoyancy for a wooden block of width 2.5 m and
of depth 1.5 m, when it floats horizontally in water. The
density of wooden block is 650 kg/m3 and its length 6.0 m.

Solution:

kN 4.9 W
19.62W14.72
thrustupward with concrete andblock of weight total theequating Now
kN 19.62 2 x 9.81
in water immersed completely isblock en the thrust wh Upward
2m displaced water of volume
in water, immersed completely isblock the that whenknow We
kN W 14.72 concrete andblock theof weight Total
kN 14.72 2 x 0.75 x 9.81 Weight its and
2m 0.5 x 1 x 4 block wooden of Volume
block.on wooden placed be torequired Concrete of weight thebeLet W
3
3







 Problem-2
Awoodenblockof4mx1mx0.5minsizeandofspecificgravity0.75
isfloatinginwater.Findtheweightofconcreteofspecificweight24k
kN/m3thatmaybeplacedontheblock,whichwillimmersethe
woodenblockcompletely.
Solution:

“Wheneverabody,floatinginaliquid,isgivenasmall
angulardisplacement,itstartsoscillatingaboutsomepoint.
Thispoint,aboutwhichthebodystartsoscillating,iscalled
metacentre.”
Metacentre:

Metacentric Height:
“Thedistancebetweencentreofgravityofafloatingbodyand
themetacentre(i.edistancebetweencgandminFig.)is
calledmetacentricheight.”
Metacentricheightofafloatingbodyisadirectmeasureofits
stability.
Morethemetacentricheightofafloatingbody,moreitwill
stableandviceversa.
Somevaluesofmetacentricheight:
MerchantShips=upto1.0m
SailingShips=upto1.5m
BattleShips=upto2.0m
RiverCraft=upto3.5m

Analytical Method for Metacentric Height:
Consideringashipfloatingfreelyinwater.Lettheshipbe
givenaclockwiserotationthroughasmallangleq(in
radians)asshowninFig.Theimmersedsectionhasnow
changedfromacdetoacd
1e
1.

Analytical Method for Metacentric Height:
TheoriginalcentreofbuoyancyBhasnowchangedtoanew
positionB
1.Itmaybenotedthatthetriangularwedgeocnhas
goneunderwater.Sincethevolumeofwaterdisplaced
remainsthesame,thereforethetwotriangularwedgesmust
haveequalareas.
Alittleconsiderationwillshow,thatasthetriangularwedge
oamhascomeoutofwater,thusdecreasingtheforceof
buoyancyontheleft,thereforeittendstorotatethevesselin
ananti-clockwisedirection.
Similarly,asthetriangularwedgeocnhasgoneunderwater,
thusincreasingtheforceofbuoyancyontheright,thereforeit
againtendstorotatethevesselinananticlockwisedirection.

Analytical Method for Metacentric Height:
Itisthusobvious,thattheseforcesofbuoyancywillforma
couple,whichwilltendtorotatevesselinanticlockwise
directionaboutO.Iftheangle(q),throughwhichthebodyis
givenrotation,isextremelysmall,thentheshipmaybe
assumedtorotateaboutM(i.e.,metacentre).
Letl=lengthofship
b=breadthofship
q=Verysmallangle(inradian)throughwhichtheshipis
rotated
V=Volumeofwaterdisplacedbytheship

Analytical Method for Metacentric Height:
From the geometry of the figure, we find that
am=cn=bq/2
--Volume of wedge of water aom
= ½ (b/2 x am)xl
= ½ (b/2 x bq/2)l (am = bq/2)
= b
2
ql/8
--Weight of this wedge of water
= b
2
ql/8 (=sp. Wt. of water)
--And arm L.R. of the couple = 2/3 b
--Moment of the restoring couple
= (b
2
ql/8) x (2/3 b) = b
3
ql/12 …(i)

Analytical Method for Metacentric Height:
--Andmomentofthedisturbingforce
=.VxBB
1 …(ii)
--Equatingthesetwomoments(i&ii),
b
3
ql/12=xVxBB
1
--Substitutingvaluesof:
lb
3
/12=I(i.e.momentofinertiaoftheplanoftheship)and
BB
1=BMxqintheaboveequation,
.I.qxV(BMxq)
BM=I/V
BM=Momentofinertiaoftheplan/Volumeofwaterdisplaced

Analytical Method for Metacentric Height:
--Now metacentric height,
Note: +ve sign is to be used if G is lower than B and,
–ve sign is to be used if G is higher than B.BGBMGM 

Problems:
1.Arectangularblockof5mlong,3mwideand
1.2mdeepisimmersed0.8mintheseawater.If
thedensityofseawateris10kN/m2,findthe
metacentricheightofblock.
2.Asolidcylinderof2mdiameterand1mheightis
madeupofamaterialofSp.Gravity0.7andfloats
inwater.Finditsmetacentricheight.

Conditions of Equilibrium of a Floating
Body:
Abodyissaidtobeinequilibrium,whenitremains
insteadystate,Whilefloatinginaliquidfollowing
arethethreeconditionsofequilibriumofafloating
body:
1.StableEquilibrium
2.UnstableEquilibrium
3.NeutralEquilibrium

1. Stable Equilibrium:
Abodyissaidtobeinastableequilibrium,ifit
returnsbacktoitsoriginalposition,whengivena
smallangulardisplacement.
Thishappenswhenmetacentre(M)ishigherthan
centreofgravity(G)ofthefloatingbody.

2. Unstable Equilibrium:
AbodyissaidtobeinaUnstableequilibrium,ifit
doesnotreturnbacktoitsoriginalposition,when
givenasmallangulardisplacement.
Thishappenswhenmetacentre(M)islowerthan
centreofgravity(G)ofthefloatingbody.

3. Neutral Equilibrium:
Abodyissaidtobeinaneutralequilibrium,ifit
occupiesanewpositionandremainsatrestinthis
newposition,whengivenasmallangular
displacement.
Thishappenswhenmetacentre(M)concideswith
centreofgravity(G)ofthefloatingbody.

Problems:
3.Arectangulartimberblock2mlong,1.8mwideand1.2m
deepisimmersedinwater.Ifthespecificgravityofthe
timberis0.65,provethatitisinstableequilibrium.
4.Acylindricalbuoyof3mdiameterand4mlongisweighing
150N.Showthatitcannotfloatverticallyinwater.
5.Asolidcylinderof360mmlongand80mmdiameterhasits
base10mmthickofspecificgravity7.Theremainingpartof
cylinderisofspecificgravity0.5.Determine,ifthecylinder
canfloatverticallyinwater.
Tags