Lecture-4 Reduction of Quadratic Form.pdf

2,752 views 33 slides May 29, 2023
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

Ouadratic form


Slide Content

Reduction Of
Quadratic Form
To
Canonical Form
1

QuadraticForm
2
Definition: The quadratic form in n variables �
1,�
2.,….�
??????is the general homogenous
function of second degree in the variables
i.e. Y=�(�
1,�
2.,….�
??????)=σ
�,�=1
??????
�
���
��
�
In terms of matrix notation , the quadratic form is given by
Y=�
??????
��=�
1�
2…�
??????
�
11�
12…�
1??????
�
21�
22…�
2??????
…………
�
??????1�
??????2…�
????????????
�
1
�
2

�
??????

InMatrixNotation
3
In two variables (�,�): ��
2
+2ℎ��+��
2
��,�,�=�
??????
��=��
�ℎ
ℎ�
�
�
Here A is known as matrix of quadratic form
.

Inthreevariables
4
�(�,�,�)=��
2
+��
2
+��
2
+2ℎ��+2���+2���
In matrix notation
��,�,�=�
??????
��=���
�ℎ�
ℎ��
���
�
�
�

Towritematrixofquadraticforminthreevariables
5
��,�,�=��
2
+��
2
+��
2
+2ℎ��+2���+2���
A=
�����??????�??????���(�
2
)
1
2
�����??????�??????���(��)
1
2
�����??????�??????���(��)
1
2
�����??????�??????���(��)�����??????�??????���(�
2
)
1
2
�����??????�??????���(��)
1
2
�����??????�??????���(��)
1
2
�����??????�??????���(��)�����??????�??????���(�
2
)

6
Ex. Obtain the matrix of the Quadratic form
Q=�
2
+2�
2
−7�
2
−4��+8��+5��
Sol. Compare the given quadratic form by standard form
��,�,�=��
2
+��
2
+��
2
+2ℎ��+2���+2���
Here �=1,�=2,�=−7;ℎ=−2;�=4;�=
5
2
Thereforecoefficientmatrixis
�=
�ℎ�
ℎ��
���
=
1−24
−22
5
2
4
5
2
−7
Whichisasymmetricmatrix.

7
Ex. Obtain the matrix of the Quadratic form
Q=2�
2
+3�
2
+�
2
−3��+2��+4��
�=
�ℎ�
ℎ��
���
=
2−
3
2
1

3
2
32
121
Ans.

�=
EX.Writedownthequadraticformcorrespondingtothe
matrix
�=
125
203
534
���.Quadraticform??????��
??????
���ℎ����=
�
�
�
�
??????
��=���
125
203
534
�
�
�
or ��,�,�=�
2
+0�
2
+4�
2
+4��+6��+10��
is the required Quadratic form.
8

Sol.Quadraticform=�
??????
���ℎ���X=
�
�
�
�
??????
��=���
324
204
443
�
�
�
or ��,�,�=3�
2
+0�
2
+3�
2
+4��+8��+8��
is the required Quadratic form.
EX.Writedownthequadraticformcorrespondingtothematrix
�=
324
204
443
9

CANONICALFORMOR
SUMOFSQUAREFORM
10
The sum of square form of a real quadratic form �
??????
��is
??????
??????
????????????=??????
�??????
�
�
+ ??????
�??????
�
�
+…… +??????
????????????
??????
�
is known as canonical form which is formed with the help of the
orthogonal transformation �=��where B is the modal matrixof
normalizedeigenvectors,Y=
�
1
�
2

�
??????
and D is a diagonal matrix whose
diagonal elements are the eigen values of the matrix A.

11
1.Firstwritethecoefficientmatrixofthegivenquadratic
form.
2.Findtheeigenvaluesandeigenvectorofthecoefficient
matrixA.
3.Nowcheckwhethereigenvectorsarepairwise
orthogonalornot.
OrthogonalVector;Twovectors�
1,�
2aresaidtobe
orthogonaliftheirinnerproductiszeroi.e.�
1
??????
.�
2=0
Working Method

12
4.FormamodalmatrixBofnormalizedeigen
vector
i.e.B=�
1 �
2 �
3
IfX
1=
�
1
�
2
�
3
then�
1=
�
1
�
1
2
+�
2
2
+�
3
2
�
2
�
1
2
+�
2
2
+�
3
2
�
3
�
1
2
+�
2
2
+�
3
2
Similarlyfor�
2and�
3
HereBismatrixoftransformation

13
�
5. Here B matrix is an orthogonal matrix
∴��
??????
=??????
∵�
??????
=�
−1
Find �
−1
��
�
−1
��=??????(diagonal matrix whose diagonal elements are
eigen values of the matrix A)
The required canonical form is
�
??????
(�
−1
��)�= �
??????
??????�=�
1�
2�
3
??????
100
0??????
20
00??????
3
�
1
�
2
�
3
i.e. ??????
1�
1
2
+ ??????
2�
2
2
+ ??????
3�
3
2
is the required canonical form and
�=��isrequiredorthogonaltransformation.

Ex. Reduce the quadratic form
Q(�,�,�)=�
1
2
+3�
2
2
+3�
3
2
−2�
2�
3into canonical
form using orthogonal transformation.
Sol.Writethecoefficientmatrixofgivenquadratic
form
�=
100
03−1
0−13
TheeigenvaluesofAare1,2,4
14

EigenVectorsfor??????=1
�−??????
1??????�
1=����−??????�
1=�
or
000
02−1
0−12
�
1
�
2
�
3
=
0
0
0
or
000
02−1
00
3
2
�
1
�
2
�
3
=
0
0
0
Applying�
3→�
3+
1
2
�
2
2�
2−�
3=0.......(1)
�
3=0.............(2)
Hereno.ofequations(m)are2andno.of
variables(n)are3
n−m=3−2=1variableisindependent.
Let�
1=k
�
3=0;�
2=0
�
1=�
15

�
1=
�
1
�
2
�
3
=
�
0
0
If�=1�ℎ���
1
=
1
0
0
istheeigenvector
correspondingto??????=1
16

Eigenvectorfor??????=2
�−??????
2??????�
2=�or�−2??????�
2=�
−100
01−1
0−11
�
1
�
2
�
3
=
0
0
0
Applying�
3→�
3+�
2
−100
01−1
000
�
1
�
2
�
3
=
0
0
0
�
1=0.......(1)
�
2−�
3=0.............(2)
Hereno.ofequations(m)are2andno.of
variables(n)are3
n−m=3−2=1variableisindependent.
Let�
3=k
�
2=�
3,
�
3=�=�
2
17

�
2=
�
1
�
2
�
3
=
0
�
�
If�=1�ℎ���
2=
0
1
1
istheeigenvector
correspondingto??????=2
18

EigenVectorfor??????=4
�−??????
3??????�
3=�or�−4??????�
3=�
or
−300
0−1−1
0−1−1
�
1
�
2
�
3
=
0
0
0
�����??????��R
3→R
3−R
2
−300
0−1−1
000
�
1
�
2
�
3
=
0
0
0
�
1=0;�
2+�
3=0
Hereno.ofequationsare(m)2and
no.ofvariables(n)are3
n−m=3−2=1variableisindependent.
∴Let�
3=k
�
2=−�
3
�
2=−�;�
1=0
19

�
3=
�
1
�
2
�
3
=
0
−�
�
??????��=1�ℎ���
3=−
0
1
1
istheeigenvector
correspondingto??????=4
20

Continued.
21
Eigen vector corresponding to matrix A
�
1=
1
0
0
,�
2=
0
1
1
, �
3=
0
−1
1
Now to check whether �
1, �
2, �
3are pairwise orthogonal.
Pairwise Orthogonal –Two vectors �
1, �
2are said to be orthogonal
if their inner product i.e. �
1
??????
.�
2=0 
orthogonal pairwise are , , Here
also. vectorsothersfor check can weSimilarly
.orthogonal pairwise are , Therefore
0
1
1
0
001
1
1
0
0
0
1
.
321
21
21
XXX
XX
XX
T
T
=










=




















=

Nowweformnormalizedmodalmatrix
�=
10 0
0
1
2

1
2
0
1
2
1
2
,�
−1
=
10 0
0
1
2
1
2
0−
1
2
1
2
�
−1
��=
10 0
0
1
2
1
2
0−
1
2
1
2
100
03−1
0−13
10 0
0
1
2

1
2
0
1
2
1
2
22

23
�
−1
��=
100
020
004
i.e. �
−1
��=D
where D is a diagonal matrix whose diagonal
elements are the eigen values of the matrix of
quadratic form.

The canonical Form
�
??????
(�
−1
��)�=�
??????
??????�
=�
1�
2�
3
100
020
004
�
1
�
2
�
3
=�
1
2
+2�
2
2
+4�
3
2
�
1
2
+2�
2
2
+4�
3
2
istherequiredcanonicalform.
24

Orthogonal
Transformation
�=��
�
1
�
2
�
3
=
�=��
�
1
�
2
�
3
=
10 0
0
1
2

1
2
0
1
2
1
2
�
1
�
2
�
3
�
1=�
1,
�
2=
1
2
�
2−
1
2
�
3,
�
3=
1
2
�
2+
1
2
�
3
istherequired
orthogonaltransformation.
25

Reduce 6�
2
+3�
2
+3�
2
−4��−2��+4��into
canonical form by orthogonal transformation.
Sol.Writethecoefficientmatrixofgivenquadratic
form
�=
6−22
−23−1
2−13
TheeigenvaluesofAare2,2,8
The eigen vectors corresponding to 2,2,8are
−1
0
2
,
1
2
0
and
2
−1
1
respectively.
26

27
�
1=
−1
0
2
, �
2=
1
2
0
, �
3=
2
−1
1
Here �
1, �
2, are not pairwise orthogonal
Let �
1is a vector which is orthogonal to �
2and �
3
Let �
1=
�
�
�
than �
1
??????
.�
2= 0 or ���
1
2
0
=0
or a+2b=0……(1)
similarly�
1
??????
.�
3= 0 or ���
2
−1
1
=0 or 2a -b + c=0…..(2)
Assuming b =�,�������??????�������
�=−2�����=5�or �
1=
−2�
�
5�
or if �=1 than �
1=
−2
1
5
Now �
1, �
2, and �
3are pairwise orthogonal .
Now rest of the process is same as in previous example.

INDEX ,SIGNATURE,RANK
Let�=�
??????
��
beaquadraticforminnvariables�
1,�
2,...........�
??????.
INDEX∶Theno.ofpositiveterms(p)inthecanonicalform.
Signature:Thedifferencebetweenpositiveandnegativetermsinthecanonicalform.
Rank:A matrix is said to be of rank r when
(i) it has at least one non-zero minor of order r,
and (ii) every minor of order higher than r vanishes.
Briefly, the rank of a matrix is the largest order of any non-vanishing minor of
the matrix.
28

29
Determine the rank of the following matrices:
(i)A=
���
���
���
Sol. (i)HereA is a 3 x3 matrix
∴??????(�)≤3
After operating �
2→�
2-�
1,�
3→�
3−2�
1
A~
���
��−�
��−�
Operating �
3→�
3-�
2
A~
���
��−�
���
The only third order minor is zero, but the second order minor
12
02
=2≠0
∴??????�=2

30
Sol. (ii)Here B is a 2 x 4 matrix.
∴??????(�)≤2, the smaller of 2 and 4.
The second order minor
12
−20
=4≠0
∴??????�=2
(ii) B=
����
−����

Let �
??????
��be a real quadratic form in n
variables�
1,�
2,….�
??????with rank r and signature s.
Then we say that the quadratic form is
(i) positive definite if r = n, s = n
(ii) negative definite if r = n, s = 0
(iii) positive semidefinite if r<n and s = r
(iv) negative semidefinite if r<n, s = 0
(v) indefinite in all other cases.
31
NATURE OF QUADRATIC FORM
( using rank, signature)

NATURE OF QUADRATIC FORM
(using eigen values)
POSITIVE DEFINITE: If all the eigenvalues of
the coefficient matrix are POSITIVE.
POSITIVE SEMI DEFINITE: If all the eigen
values of the coefficient matrix are POSITIVE and
at least one is zero.
NEGATIVE DEFINITE: If all the eigenvalues
of the coefficient matrix are NEGATIVE.
NEGATIVE SEMI DEFINITE : If all the eigen
values of the coefficient matrix are NEGATIVE
and
at least one is zero.
➢INDEFINITE: If some of the eigenvalues are
POSITIVE and some are NEGATIVE.
32

EX.Determinethenature,indexandsignatureofthequadraticform
&#3627408452;(&#3627408485;)=2&#3627408485;
1&#3627408485;
2+2&#3627408485;
1&#3627408485;
3+2&#3627408485;
3&#3627408485;
2
Solution.Here
&#3627408436;=
011
101
110
NowthecharacteristicequationforAis
??????
3
−3??????−2=0
or ??????=2,−1,−1
Someoftheeigenvaluesarepositiveand
somearenegative.
Hence??????(??????)isindefinite.
Herethecanonicalformis2&#3627408485;
1
2
−&#3627408485;
2
2
−&#3627408485;
3
2
.
Index=1 No.ofpositivetermincanonicalform
Signature=-1
(differenceofpositiveandnegativetermincanonicalform)
33
Tags