Lecture 9 Plane Stress of materials .pdf

manasephl 30 views 24 slides Sep 04, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

Mechanics of materials


Slide Content

9. Two Dimensional State of Stress: Transformation of
Stress…Cont’d
Introduction
•Thisisachangingthecomponentsofthestateof
stressgiveninonesetofcoordinateaxestoany
othersetofrotatedaxes.
•Thepossibilityoftransformingagivenstateof
stressinvolvingbothnormalandshearstressesto
anyothersetofrotatedcoordinateaxespermits
anexaminationoftheeffectofsuchstressesona
material.
•Inpreviouschapters,stressescausedbyseparate
actionscausingeithernormaland/orshear
stresseswereconsidered.
1

9. Two Dimensional State of Stress: Transformation of
Stress
2
Representations of stresses acting on an element

9. Two Dimensional State of Stress: Transformation of Stress
•Superpositionofnormalstressesactingonthe
sameelement,whenaxialforcesandbending
momentoccursimultaneously,wasalsodiscussed
inlecture8.
•Ofteninstressanalysis,amoregeneralproblem
arises,suchasshowninfigure1.
•Intheillustratedcase,elementAissubjectedtoa
normalstressσ
x
duetoaxialpullandbending
moment,andsimultaneouslyexperiencesadirect
shearstressτ
xy
.
3

9. Two Dimensional State of Stress: Transformation of Stress



x
x
x
x
y
y
y
y

 



x
x
x
x
x
xx
y
y
y
y
y
y
y




Fig. 1: A Two Dimensional Stress System
4

Equations for Transformation of Two Dimensional Stress
•Givenarethestresses
x,
yand
xyactingonthe
sidesofaplaneelement.fig.2(a)
•Requiredarethenormalstress()andthe
shearingstress()actingonanyplaneintermsof
thegivenstressesandtheangleofinclination(q
o
)
oftheplanebeinginvestigated.Fig2(b)



x
x
x
x
xx
y
y
y
y
y
y



 


x
x
x
y
y
y



q

Fig. 2(a)
Fig. 2(b)
5

Equations for Transformation of Two Dimensional Stress
•Considerthestressesandactingonaninclined
planeofuniformlystressedrectangularblock.fig3(a).
•Theinclinedplanemakesanangleq
o
withtheyaxis.
Thelengthofthehypotenuseiscandthethicknessof
theblockistunitsoflength.Seefig3(a)andfig3(b)
Fig. 3(a)
Fig. 3(b)


x
x
x
y
y
y



q

c
c.sinq
c.cos
q 



x
x
x
x
x
x
x
y
y
y
y
y
y
y





+u
+v

A
B
q
q
q




x
x
x
x
y
y
y
y


tunits
6

Equations for Transformation of Two Dimensional Stress
•Consider the forces acting on the wedge. Fig.4(a)
Fig. 4(a)
Fig. 4(b)q
-A.cosq
+A.sinq
 q
-A.cosq
-A.sinq

Fig. 4(c)


+u
+v
x
x
y
y
y
x



q

c
c.sinq
.t.c.sinq
.t.c.sinq
.t.c.cosq
.t.c.cosq
c.cos
q
.t.c .t.c
7

•Equilibrium of the forces In the u-and v-directions:
Sum of forces in u-direction =0:
.t.c-
x.t.c.cosq.cosq-
y.t.c.sinq.sinq-
xy .t.c.cosq.sinq-
yx.t.c.sinq.cosq=0
Sum of forces in v-direction =0:
.t.c+
x.t.c.cosq.sinq-
y.t.c.sinq.cosq-
xy .t.c.cosq.cosq+
yx.t.c.sinq.sinq=0
=
x.cos
2
q.+ 
y.sin
2
q+2. 
xy.cosq.sinq
Hence
= (
y–
x.) cosq.sinq+ 
xy(cos
2
q-sin
2
q)
Hence
[1]
[2]
8

2
2cos1
sin
2
12cos
cos
2sin
2
1
cossin
2cossincos
1sincos
2
2
22
22
q
q
q
q
qqq
qqq
qq
-




-
 from
It followsqq

 2sin2cos
22
xy
yxyx

-


 qq

 2cos2sin
2
xy
yx

-
-
[3]
[4]
9

From eq. 4 it follows that the shear stresses varnish when 02cos2sin
2

-
- qq


xy
yx
[5]
That is when:( )
( )
( )







-


-


-


-
yx
xy
yx
xy
yx
xy
or
whenei


q


q


q
q
2
tan
2
1
2
2tan..
2
2cos
2sin
1
Thus, in a two dimensional stress system there are two planes
separated by 90
o
on which the shearing stress is zero.
10

Notes on the Equations for the Transformation of Stress
 Thederivativesofthealgebraicexpressionsforthenormaland
shearingstresswithrespecttotheangleofinclination,whenset
equaltozero,locatetheplanesonwhicheitherthenormalor
theshearingstressreachesamaximumorminimumvalue.
 Thenormaltensilestressesarepositiveandthecompressive
stressesarenegative.
 ShearstressesthattendtorotatetheelementANTICKLOWISE
arePOSITIVE.



x
x
x
x
x
xx
y
y
y
y
y
y
y




Fig. 5: Sign Convention
1.The Normal Stresses are positive
2.Theshearstressesontherightand
leftfacesarePOSITIVE
3. The shear stresses on the top and
bottom faces are NEGATIVE
11

PRINCIPAL STRESSES 02cos22sin2
2

-
- qq

q

xy
yx
d
d
That is the planes with maximum or minimum normal stress are given by( )
( )
( )






-


-


-


-
yx
xy
yx
xy
yx
xy
or
ei


q


q


q
q
2
tan
2
1
2
2tan..
2
2cos
2sin
1
1
1
1
1
TheseplanesarecalledPRINCIPALPLANES.The
correspondingvaluesofarecalledPRINCIPALSTRESSES.
To find the plane of maximum or minimum normal stress Eq. 3 is differentiated
with respect to qand the derivative is set equal to zero, i.e.,
[6]
[7]
12

PRINCIPAL STRESSES…Cont’d ( )
yx
xy
p


q
-


2
2tan
1
 Notethatequations[5]and[7]aresimilar.Thereforeonplanesonwhich
maximumorminimumnormalstressesoccur,therearenoshearing
stresses.
 Themagnitudesoftheprincipalstressescanbeobtainedbysubstituting
valuesofthesineandcosinefunctionscorrespondingtothedouble
anglegivenbyeq.[6]intoequation[3]






-








-








-


2
2
2cos
2
2sin
2
1
2
1
yx
xy
yx
p
yx
xy
xy
p



q



q
13

From eq.[3], i.e.,
It followsqq

 2sin2cos
22
xy
yxyx

-


 2
2
2,1minmax/
2
2
2
2
minmax/
2
2
2
2
minmax/
22
2
2
2
22
2
22







-










-








-











-









-








-








-



yx
xy
yx
yx
xy
yx
xy
yx
yx
xy
xy
xy
yx
xy
yx
yxyx



















[8]
and eq.[6]
14

MAXIMUM SHEARING STRESSESxy
yx
yx
xy
xy
yx
or
d
d


q


q
q
qq

q


-
-
-

-
-
-
-
2
)(
2tan
2
2sin
2cos
02sin22cos2
2
To find the plane of maximum or minimum shearing stress Eq. 4 is
differentiated with respect to qand the derivative is set equal to zero, i.e.,2
2
1
2
2
1
1
2
2cos
2
2
)(
2sin
2
)(
2tan







-









-

-
-

-
-
yx
xy
xy
s
yx
xy
yx
s
xy
yx
s



q



q


q
[9]
15

MAXIMUM SHEARING STRESSESqq

 2cos2sin
2

-
-
xy
yx
Tofindthemagnitudesofthemaximumandtheminimumshearing
stresses,thevaluesofthesineandcosinefunctionscorrespondingtothedouble
anglegivenbyeq.[9]aresubstitutedintoequation[4]2
2
2
2
minmax/
22
2
)(
2







-









-

-
-
-
-
yx
xy
xy
xy
yx
xy
yxyx








i.e. from eq.4 i.e.
One gets 2
2
2
2
2
2
minmax/
2
2
2







-








-








-


yx
xy
yx
xy
yx
xy







That is
Note: The maximum shear stress differ from the minimum shear stress only in sign
[10]
and eq.[9]
16

From eq.[8], i.e.
It follows2
2
2
2].[].[
].[
22
].[
22
21
minmax/
2
2
minmax/
2
2
21
2
2
2
2
2
1














-








-








-
--







-
-









-



yx
xy
yx
xy
yx
xy
yx
yx
xy
yx
But
givesiiEqiEq
iiEq
iEq
[11]2
2
2/1
22







-



yx
xy
yx




17

From eq.[3], i.e.,
It followsqq

 2sin2cos
22
xy
yxyx

-


 stressshearwithplaneonstressNormalei
yx
yx
xy
yx
xy
yx
xy
xyyxyx
minmax/
2
..
2
2
2
22
2
2
2
2










-

-








-









-
-












Themagnitudesofthenormalstressesactingontheplaneswith
maximumandminimumshearingstressescanbeobtainedby
substitutingvaluesofthesineandcosinefunctionscorrespondingto
thedoubleanglegivenbyeq.[9]intoequation[3]
Normal Stresses on Planes with Max/Min Shear Stresses
Therefore a normal stress acts with the maximum/ minimum shear stress.
[12]
and eq.[9]
18

From eq.[3]qq

 2sin2cos
22
xy
yxyx

-


-
Mohr’s Circle of Stress
[15]qq

 2cos2sin
2
xy
yx

-
-
From eq.[4]
[13]
[14]
Squaring Eqs.[13] and [14] and adding gives2
2
2
2
22
xy
yxyx




 







-








 
- ()
222
ryax -
We know that a circle with radius rand center at x=a , y=0on the x,y planeis given by
[16]
Hence, eq [15] is an equation of a circle on the ,plane with its center at







0,
2
yx

And radius2
2
2
xy
yx










-
19





x
x
x
x
x
x
x
y
y
y
y
y
y
y






A
B
q 


x
x
y
y Fig.6(c):Positive Normal Stresses
Fig.6(d) Element for fig 4(a)
Fig.6(a) Mohr’s Circle of Stress
Fig.6(b)




 
 



max
xy
yx
112
x
x
y
,
,
xy y
min
O CJ
+ -
2 2
(
(
(
(
A
B-
2q
20

•PointAonthecirclecorrespondstothestressesonthe
rightfaceofthegivenelement.
•NotethatAJ/CJ=tan2q
1andthisisthesameasEq.[6].Therefore
angleACJistwicetheangleofinclinationoftheprincipleplane.
•Thefollowingconclusionsregardingthestateofstressatapointcan
bedrawnfromtheMohr’scircle
 
1isthelargestnormalstressand
2isthesmallest
normalstress
 TheradiusoftheMohr’scircleisnumericallyequal
to
maxandalsoto(
1-
2)/2
 Thenormalstressontheplanesofmaximum
shearingstressis(
1+
2)/2
21

22

Example 1
Thestateofstressat
apointjustbefore
failureoftheshaftis
shownintheFig.
Determine;
(a)Principalplanes
(b)Principalstresses
andshowtheresults
onproperlyorientated
element.
23

Example 2
Thestateofplanestressat
apointonabodyis
representedontheelement
shown intheFig.
Determine;
(a)Planes with
maximum/minimum shear
stress (b) Maximum and
minimum shear stresses
(c) Associated normal
stress.
Show the results on
properly oriented element
24
Tags