9. Two Dimensional State of Stress: Transformation of
Stress…Cont’d
Introduction
•Thisisachangingthecomponentsofthestateof
stressgiveninonesetofcoordinateaxestoany
othersetofrotatedaxes.
•Thepossibilityoftransformingagivenstateof
stressinvolvingbothnormalandshearstressesto
anyothersetofrotatedcoordinateaxespermits
anexaminationoftheeffectofsuchstressesona
material.
•Inpreviouschapters,stressescausedbyseparate
actionscausingeithernormaland/orshear
stresseswereconsidered.
1
9. Two Dimensional State of Stress: Transformation of
Stress
2
Representations of stresses acting on an element
9. Two Dimensional State of Stress: Transformation of Stress
•Superpositionofnormalstressesactingonthe
sameelement,whenaxialforcesandbending
momentoccursimultaneously,wasalsodiscussed
inlecture8.
•Ofteninstressanalysis,amoregeneralproblem
arises,suchasshowninfigure1.
•Intheillustratedcase,elementAissubjectedtoa
normalstressσ
x
duetoaxialpullandbending
moment,andsimultaneouslyexperiencesadirect
shearstressτ
xy
.
3
9. Two Dimensional State of Stress: Transformation of Stress
x
x
x
x
y
y
y
y
x
x
x
x
x
xx
y
y
y
y
y
y
y
Fig. 1: A Two Dimensional Stress System
4
Equations for Transformation of Two Dimensional Stress
•Givenarethestresses
x,
yand
xyactingonthe
sidesofaplaneelement.fig.2(a)
•Requiredarethenormalstress()andthe
shearingstress()actingonanyplaneintermsof
thegivenstressesandtheangleofinclination(q
o
)
oftheplanebeinginvestigated.Fig2(b)
x
x
x
x
xx
y
y
y
y
y
y
x
x
x
y
y
y
q
Fig. 2(a)
Fig. 2(b)
5
Equations for Transformation of Two Dimensional Stress
•Considerthestressesandactingonaninclined
planeofuniformlystressedrectangularblock.fig3(a).
•Theinclinedplanemakesanangleq
o
withtheyaxis.
Thelengthofthehypotenuseiscandthethicknessof
theblockistunitsoflength.Seefig3(a)andfig3(b)
Fig. 3(a)
Fig. 3(b)
x
x
x
y
y
y
q
c
c.sinq
c.cos
q
x
x
x
x
x
x
x
y
y
y
y
y
y
y
+u
+v
A
B
q
q
q
x
x
x
x
y
y
y
y
tunits
6
Equations for Transformation of Two Dimensional Stress
•Consider the forces acting on the wedge. Fig.4(a)
Fig. 4(a)
Fig. 4(b)q
-A.cosq
+A.sinq
q
-A.cosq
-A.sinq
Fig. 4(c)
+u
+v
x
x
y
y
y
x
q
c
c.sinq
.t.c.sinq
.t.c.sinq
.t.c.cosq
.t.c.cosq
c.cos
q
.t.c .t.c
7
•Equilibrium of the forces In the u-and v-directions:
Sum of forces in u-direction =0:
.t.c-
x.t.c.cosq.cosq-
y.t.c.sinq.sinq-
xy .t.c.cosq.sinq-
yx.t.c.sinq.cosq=0
Sum of forces in v-direction =0:
.t.c+
x.t.c.cosq.sinq-
y.t.c.sinq.cosq-
xy .t.c.cosq.cosq+
yx.t.c.sinq.sinq=0
=
x.cos
2
q.+
y.sin
2
q+2.
xy.cosq.sinq
Hence
= (
y–
x.) cosq.sinq+
xy(cos
2
q-sin
2
q)
Hence
[1]
[2]
8
From eq. 4 it follows that the shear stresses varnish when 02cos2sin
2
-
- qq
xy
yx
[5]
That is when:( )
( )
( )
-
-
-
-
yx
xy
yx
xy
yx
xy
or
whenei
q
q
q
q
2
tan
2
1
2
2tan..
2
2cos
2sin
1
Thus, in a two dimensional stress system there are two planes
separated by 90
o
on which the shearing stress is zero.
10
Notes on the Equations for the Transformation of Stress
Thederivativesofthealgebraicexpressionsforthenormaland
shearingstresswithrespecttotheangleofinclination,whenset
equaltozero,locatetheplanesonwhicheitherthenormalor
theshearingstressreachesamaximumorminimumvalue.
Thenormaltensilestressesarepositiveandthecompressive
stressesarenegative.
ShearstressesthattendtorotatetheelementANTICKLOWISE
arePOSITIVE.
x
x
x
x
x
xx
y
y
y
y
y
y
y
Fig. 5: Sign Convention
1.The Normal Stresses are positive
2.Theshearstressesontherightand
leftfacesarePOSITIVE
3. The shear stresses on the top and
bottom faces are NEGATIVE
11
PRINCIPAL STRESSES 02cos22sin2
2
-
- qq
q
xy
yx
d
d
That is the planes with maximum or minimum normal stress are given by( )
( )
( )
-
-
-
-
yx
xy
yx
xy
yx
xy
or
ei
q
q
q
q
2
tan
2
1
2
2tan..
2
2cos
2sin
1
1
1
1
1
TheseplanesarecalledPRINCIPALPLANES.The
correspondingvaluesofarecalledPRINCIPALSTRESSES.
To find the plane of maximum or minimum normal stress Eq. 3 is differentiated
with respect to qand the derivative is set equal to zero, i.e.,
[6]
[7]
12
From eq.[3]qq
2sin2cos
22
xy
yxyx
-
-
Mohr’s Circle of Stress
[15]qq
2cos2sin
2
xy
yx
-
-
From eq.[4]
[13]
[14]
Squaring Eqs.[13] and [14] and adding gives2
2
2
2
22
xy
yxyx
-
- ()
222
ryax -
We know that a circle with radius rand center at x=a , y=0on the x,y planeis given by
[16]
Hence, eq [15] is an equation of a circle on the ,plane with its center at
0,
2
yx
And radius2
2
2
xy
yx
-
19
x
x
x
x
x
x
x
y
y
y
y
y
y
y
A
B
q
x
x
y
y Fig.6(c):Positive Normal Stresses
Fig.6(d) Element for fig 4(a)
Fig.6(a) Mohr’s Circle of Stress
Fig.6(b)
max
xy
yx
112
x
x
y
,
,
xy y
min
O CJ
+ -
2 2
(
(
(
(
A
B-
2q
20
Example 2
Thestateofplanestressat
apointonabodyis
representedontheelement
shown intheFig.
Determine;
(a)Planes with
maximum/minimum shear
stress (b) Maximum and
minimum shear stresses
(c) Associated normal
stress.
Show the results on
properly oriented element
24