lecture Electronic BJT SMALL SIGNAL ANALYSIS

wasaneng 22 views 30 slides Mar 10, 2025
Slide 1
Slide 1 of 30
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30

About This Presentation

BJT SMALL SIGNAL ANALYSIS


Slide Content

Lecture 4-5:
BJT Small-Signal Analysis

Slide 1 BJT Small Signal Analysis
The re and hybrid models will be used to analyze AC small-signal transistor circuits.
The most fundamental of unbypassed
configurations appears in Fig. 29. The re equivalent
model is substituted in Fig. 1, but note the absence
of the resistance ro. The effect of ro is to make the
analysis a great deal more complicated, and
considering the fact that in

Fig. 1

Slide 2 Common-Emitter (CE) Fixed-Bias Configuration
The input (Vi) is applied to the base and the output (Vo) is from the collector.
The Common-Emitter is characterized as having high input impedance and low output
impedance with a high voltage and current gain.

Slide 3 Removing DC effects of VCC and Capacitors

Slide 4 re Model
Determine , re, and ro:
 and ro: look in the specification sheet for the transistor or test the transistor using
a curve tracer.
re: calculate re using dc analysis:
E
e
I
25mV
r

Slide 5 Impedance Calculations
Input Impedance:
[Formula
8.1]
[Formula
8.2]
Output Impedance:
[Formula
8.3]
[Formula 8.4]
eBr||RZi 
eE
e
r10R
rZi


O
r||RZo
C

c

10ro
Zo
R
R
c

Slide 6 Gain Calculations
Voltage Gain (Av):
[Formula
8.5]
[Formula
8.6]
Current Gain (Ai):
[Formula
8.7]
[Formula
8.8]
Current Gain from Voltage Gain:
[Formula 8.9]
e
oC
r
)r||(R
Vi
Vo
Av 
C
e
C
10Rro
r
R
Av


)r)(RR(r
rR
Ii
Io
Ai
eBCo
oB



re10R ,10Rro
Ai
BC 

CR
Zi
AvAi

Slide 7 Phase Relationship
The phase relationship between input and output is 180 degrees. The negative sign used in
the voltage gain formulas indicates the inversion.

Slide 8 CE – Voltage-Divider Bias Configuration

Slide 9 re Model
You still need to determine , re, and ro.

Slide 10 Impedance Calculations
Input Impedance:
[Formula
8.10]
[Formula
8.11]
Output Impedance:
[Formula
8.12]
[Formula 8.13]
21
21
21
RR
RR
R||RR


er||RZi 
oCr||RZo
C
C
10Rro
RZo

Slide 11 Gain Calculations
Voltage Gain (Av):
[Formula
8.14]
[Formula
8.15]
Current Gain (Ai):
[Formula
8.16]
[Formula
8.17]
[Formula
8.18]
Current Gain from Voltage Gain:
[Formula 8.19]
e
oC
r
r||R
Vi
Vo
Av


C
e
C
10Rro
r
R
Vi
Vo
Av


)rR)(R(r
rR
Ii
Io
Ai
eCo
o



C
e
10Rro
rR
R
Ii
Io
Ai




re10R 10RC,ro
Ii
Io
Ai


CR
Zi
AvAi

Slide 12 Phase Relationship
A CE amplifier configuration will always have a phase relationship between input and
output is 180 degrees. This is independent of the DC bias.

Slide 13 CE Emitter-Bias Configuration
Unbypassed RE

Slide 14 re Model
Again you need to determine , re.

Slide 15 Impedance Calculations
Input Impedance:
[Formula
8.20]
[Formula
8.21]
[Formula
8.22]
[Formula
8.23]
Output Impedance:
[Formula
8.33]
Ee 1)R(rZb 
)R(rZb Ee
eE
E
rR
RZb


Zb||RZi B
CRZo

Voltage Gain (Av):
[Formula
8.25]
[Formula
8.26]
or [Formula
8.27]
Current Gain (Ai):
[Formula
8.28]
Current Gain from Voltage Gain:
[Formula 8.29]
Slide 16 Gain Calculations
Zb
R
Vi
Vo
Av
C

)R(rZb
Rr
R
Vi
Vo
Av
Ee
Ee
C



E
E
C
RZb
R
R
Vi
Vo
Av


ZbR
R
Ii
Io
Ai
B
B



CR
Zi
AvAi

Slide 17 Phase Relationship
A CE amplifier configuration will always have a phase relationship between input and
output is 180 degrees. This is independent of the DC bias.

Bypassed RE
This is the same circuit as the CE fixed-bias configuration and therefore can be solved
using the same re model.
Slide 18 CE Emitter-Bias Configuration

Slide 19 Emitter-Follower Configuration
You may recognize this as the Common-Collector configuration. Indeed they are the same
circuit.
Note the input is on the base and the output is from the emitter.

Slide 20 re Model
You still need to determine , re, and ro.

Slide 21 Impedance Calculations
Input Impedance:
[Formula
8.37]
[Formula
8.38]
[Formula
8.39]
[Formula 8.40]
Zb||RZi B
Ee 1)R(rZb 
)R(rZb Ee
ERZb

Slide 22 Impedance Calculations (cont’d)
Output Impedance:
[Formula
8.42]
[Formula 8.43]
eEr||RZo
eE
e
rR
rZo


Slide 23 Gain Calculations
Voltage Gain (Av):
[Formula
8.44]
[Formula
8.45]
Current Gain (Ai):
[Formula
8.46]
Current Gain from Voltage Gain:
[Formula 8.47]
eE
E
rR
R
Vi
Vo
Av


EeEeE RrR ,rR
1
Vi
Vo
Av


ZbR
R
Ai
B
B



ER
Zi
AvAi

Slide 24 Phase Relationship
A CC amplifier or Emitter Follower configuration has no phase shift between input and
output.

Slide 25 Common-Base (CB) Configuration
The input (Vi) is applied to the emitter and the output (Vo) is from the collector.
The Common-Base is characterized as having low input impedance and high output
impedance with a current gain less than 1 and a very high voltage gain.

Slide 26 re Model
You will need to determine  and re.

Slide 27 Impedance Calculations
Input Impedance:
[Formula
8.54]
Output Impedance:
[Formula 8.55]
eEr||RZi
CRZo
Tags