Lecture - Image Enhancement (frequency domain).ppt

rahulkodag2 7 views 14 slides Mar 05, 2025
Slide 1
Slide 1 of 14
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14

About This Presentation

mage Enhancement


Slide Content

EE 4780
Image Enhancement (Frequency Domain)

Bahadir K. Gunturk 2
Frequency-Domain Filtering
Compute the Fourier Transform of the image
Multiply the result by filter transfer function
Take the inverse transform

Bahadir K. Gunturk 3
Frequency-Domain Filtering

Bahadir K. Gunturk 4
Frequency-Domain Filtering
Ideal Lowpass Filters
1, for and
( , )
0, otherwise
u vu D v D
H u v
 


>> [f1,f2] = freqspace(256,'meshgrid');
>> H = zeros(256,256); d = sqrt(f1.^2 + f2.^2) < 0.5;
>> H(d) = 1;
>> figure; imshow(H);
Separable
Non-separable
>> [f1,f2] = freqspace(256,'meshgrid');
>> H = zeros(256,256); d = abs(f1)<0.5 & abs(f2)<0.5;
>> H(d) = 1;
>> figure; imshow(H);
2 2
01, for
( , )
0, otherwise
u v D
H u v

  



Bahadir K. Gunturk 5
Frequency-Domain Filtering
Butterworth Lowpass Filter
2
2 2
0
1
( , )
1
n
H u v
u v D

 
 
 
As order increases the
frequency response
approaches ideal LPF

Bahadir K. Gunturk 6
Frequency-Domain Filtering
Butterworth Lowpass Filter
Approach to a sinc function.

Bahadir K. Gunturk 7
Frequency-Domain Filtering
Gaussian Lowpass Filter
2 2
0
( , )
u v
D
H u v e


Bahadir K. Gunturk 8
Frequency-Domain Filtering
Ideal LPF Butterworth LPF Gaussian LPF

Bahadir K. Gunturk 9
Example

Bahadir K. Gunturk 10
Highpass Filters
2
2 2
0
1
( , )
1
n
H u v
u v D


 
 
 
2 2
0
( , ) 1
u v
D
H u v e


 
2 2
00, for
( , )
1, otherwise
u v D
H u v

  



Bahadir K. Gunturk 11
Example

Bahadir K. Gunturk 12
Homomorphic Filtering
Consider the illumination and reflectance components of
an image ( , ) ( , )* ( , )f x y i x y r x y
IlluminationReflectance
   ln ( , ) ln ( , ) ln ( , )f x y i x y r x y 
Take the ln of the image
In the frequency domain
( , ) ( , ) ( , )
i r
F u v F u v F u v 

Bahadir K. Gunturk 13
Homomorphic Filtering
The illumination component of an image shows slow
spatial variations.
The reflectance component varies abruptly.
Therefore, we can treat these components somewhat
separately in the frequency domain.
1
With this filter, low-frequency components are attenuated, high-frequency
components are emphasized.

Bahadir K. Gunturk 14
Homomorphic Filtering
0.5
2.0
L
H