Bahadir K. Gunturk 2
Frequency-Domain Filtering
Compute the Fourier Transform of the image
Multiply the result by filter transfer function
Take the inverse transform
Bahadir K. Gunturk 3
Frequency-Domain Filtering
Bahadir K. Gunturk 4
Frequency-Domain Filtering
Ideal Lowpass Filters
1, for and
( , )
0, otherwise
u vu D v D
H u v
>> [f1,f2] = freqspace(256,'meshgrid');
>> H = zeros(256,256); d = sqrt(f1.^2 + f2.^2) < 0.5;
>> H(d) = 1;
>> figure; imshow(H);
Separable
Non-separable
>> [f1,f2] = freqspace(256,'meshgrid');
>> H = zeros(256,256); d = abs(f1)<0.5 & abs(f2)<0.5;
>> H(d) = 1;
>> figure; imshow(H);
2 2
01, for
( , )
0, otherwise
u v D
H u v
Bahadir K. Gunturk 5
Frequency-Domain Filtering
Butterworth Lowpass Filter
2
2 2
0
1
( , )
1
n
H u v
u v D
As order increases the
frequency response
approaches ideal LPF
Bahadir K. Gunturk 6
Frequency-Domain Filtering
Butterworth Lowpass Filter
Approach to a sinc function.
Bahadir K. Gunturk 7
Frequency-Domain Filtering
Gaussian Lowpass Filter
2 2
0
( , )
u v
D
H u v e
Bahadir K. Gunturk 10
Highpass Filters
2
2 2
0
1
( , )
1
n
H u v
u v D
2 2
0
( , ) 1
u v
D
H u v e
2 2
00, for
( , )
1, otherwise
u v D
H u v
Bahadir K. Gunturk 11
Example
Bahadir K. Gunturk 12
Homomorphic Filtering
Consider the illumination and reflectance components of
an image ( , ) ( , )* ( , )f x y i x y r x y
IlluminationReflectance
ln ( , ) ln ( , ) ln ( , )f x y i x y r x y
Take the ln of the image
In the frequency domain
( , ) ( , ) ( , )
i r
F u v F u v F u v
Bahadir K. Gunturk 13
Homomorphic Filtering
The illumination component of an image shows slow
spatial variations.
The reflectance component varies abruptly.
Therefore, we can treat these components somewhat
separately in the frequency domain.
1
With this filter, low-frequency components are attenuated, high-frequency
components are emphasized.
Bahadir K. Gunturk 14
Homomorphic Filtering
0.5
2.0
L
H