Lecture (Introduction To Probability).pdf

SabeehAhmad10 7 views 36 slides Aug 20, 2024
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

It is very good for learning probability


Slide Content

Introduction To Statistics,
Statistics And Probability
1
Dr.Shabbir Ahmad
Assistant Professor,
Department of Mathematics,
COMSATS University
Islamabad, Wah Campus
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:34 AM
Lecture No.

Introduction To Probability
Basic Concepts
2
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

In this lecture
•Set Theory and Algebra of Sets
•Basics of Probability
•Random and Non-random Experiment
•Event and Sample Space
•Simple and Compound Events
•Mutually Exclusive Events
•Exhaustive Events, Equally Likely Events
•Rules of Counting
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Set Theory:
❑Asetisanywell-definedcollectionorlistofdistinctobjects,e.g.agroupof
students,thebooksinalibrary,theintegersbetween1to100,allhumanbeings
onearth,etc.
❑Thetermwell-definedheremeansthatanyobjectmustbeclassifiedaseither
belongingornotbelongingtothesetunderstudy.
❑Theobjectsthatareinaset,arecalledmembersorelementsoftheset.
❑Setsareusuallydenotedbycapitalletterssuchas:�,�,??????,??????,etc.
❑Theelementsofthesetsarerepresentedbysmallletters,suchas:�,�,�,�,??????,etc.
❑Elementsareenclosedbybracestorepresentaset,e.g.�isthesetofvowels,i.e.,
�=�,�,??????,�,�
4
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Algebra of Sets:
5

6
❑Aplannedactivityorprocesswhoseresultsyieldasetofdata(called
outcomes),iscalledandexperiment.
❑Anoutcomeistheresultofasingletrialofaprobabilityexperiment.
❑Aneventconsistsanycollectionofresultsoroutcomesofaprocedure.
❑Asimpleeventisanoutcomeoraneventthatcannotbefurtherbrokendown
intosimplercomponents.
❑Asamplespace(S)isthesetofallpossibleoutcomesorsimpleeventsofa
probabilityexperiment.
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Random and Non-random Experiment:
❑Anexperimentwhichproducesdifferentresultseventhoughitis
repeatedalargenumberoftimesunderessentiallysimilarconditions,
iscalledarandomexperiment.
❑Forexample:thetossingofafaircoin,throwingofbalanceddie,
selectingasample,etc.
❑Anexperimentwhichproducesfixresultseventhoughitisrepeateda
largenumberoftimes,iscalledanonrandomexperiment.
❑Forexample:mixtureoftwohydrogenandoneoxygenelementmake
water,Areaofcircle,etc.
7
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Event and Sample Space
8
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Sample Space Example 1:
Experiment
Possible outcomes
HeadorTail
Thusthesamplespaceis:
�={??????���,��????????????}
Toss a Coin
9
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Sample Space Example 2:
Experiment
Possible outcomes
1,2,3,4,5,6
Thusthesamplespaceis:
�={1,2,3,4,5,6}
Roll a Dice
10
Dr. Shabbir Ahmad
Assistant Professor, Department of Mathematics, COMSATS University Islamabad, Wah Campus
Cell # 0323-5332733, 0332-5332733. Date: 12/6/2021 8:59:36 AM

Events
❑Aneventisanindividualoutcomeoranynumberofoutcomes(samplepoints)
ofarandomexperimentoratrial
❑Theeventsareclassifiedas:
•SimpleEvents
•CompoundEvents
•MutuallyExclusiveEvents
•ExhaustiveEvents
•EquallyLikelyEvents
In set terminology, any subset of a sample space Sof the experiment, is called
an event.
11

Simple and Compound Events:
❑Aneventthatcontainsexactlyonesamplepoint,isdefinedasimpleevent.
❑Acompoundeventcontainsmorethanonesamplepointsandisproducedbythe
unionofsimpleevents.
Forexample:
❑Theoccurrenceofsixwhenadieisthrown,isasimpleevent,
❑whiletheoccurrenceofasumof10withapairofdice,isacompoundevent,asit
canbedecomposedintothreesimpleevents(4,6),(5,5),���(6,4).
12

13
When two dice are rolled

Example 3: Simple Events and Sample Spaces:
Inthefollowingtable,weuse“b”todenoteababyboyand“g”todenoteababy
girl.
1birth:Theresultof1girlisasimpleeventandsoistheresultof1boy.
3births:Theresultof2girlsfollowedbyaboy(ggb)isasimpleevent.
3births:Theeventof“2girlsand1boy”isnotasimpleeventbecauseitcanoccurwith
thesedifferentsimpleevents:ggb,gbg,bgg.
14

Mutually Exclusive Events
❑TwoeventsA&Bofasingleexperimentaresaidtobemutually
exclusiveordisjointifandonlyiftheycannotbothoccuratsame
time.Forexample,
❑Whenwetossacoin,wegeteitheraheadoratail,butnot
both,thetwoeventsheadandtailarethereforemutually
exclusive.
❑Whenadieisrolled,theoutcomearemutuallyexclusiveaswe
getoneandonlyoneofsixpossibleoutcomes1,2,3,4,5,6.
15

Exhaustive Events:
❑Eventsaresaidtobecollectivelyexhaustive,whentheunionofmutually
exclusiveeventsistheentiresamplespaceS.
❑Thusinourcoin-tossingexperiment,headandtailarecollectively
exhaustivesetofevents.
16

Equally Likely Events:
❑TwoeventsA&Baresaidtobeequallylikely,whenoneeventisaslikelytooccurasthe
other.
❑Inotherwords,eacheventshouldoccurinequalnumberinrepeatedtrials.
❑Forexample,whenafaircoinistossed,theheadisaslikelytoappearastail,andthe
proportionoftimeseachsideisexpectedtoappearis
1
2
.
❑Similarly,whenadieisrolled,eachpossibleoutcomei.e.,1,2,3,4,5,6areequalchanceto
appear,andtheproportionoftimeseachsideisexpectedtoappearis
1
6
.
17

Counting Sample Points:
•ThesamplespaceS,isthesetofallpossibleoutcomesofastatisticalexperiment.
•Eachoutcomeinasamplespaceiscalledasamplepoint.Itisalsocalledanelementoramemberofthe
samplespace.
FundamentalPrincipleofCounting:
•WhenthenumberofsamplepointsinasamplespaceSisverylarge,itbecomesverydifficulttolist
themallandtocountthesamplepoints.
•Insuchcases,aprobabilityproblemmaybesolvedbycountingsamplepointsinS,withoutactually
listingeachelement.
18

Counting Sample Points:
Thebasicrulesormethodwhichhelpsustocountthenumberofsamplepointswithout
actuallylistingthemallare:
1.RuleofMultiplication
2.RuleofPermutation
3.RuleofCombination
19

1.Rule of Multiplication:
•Ifacompoundexperimentconsistsoftwoexperimentsuchthat,thefirsthasexactly�
1distinct
outcomesandcorrespondingtoeachoutcomeofthefirsttherecanbe�
2distinctoutcomesofthe
secondexperiment,thenthecompoundexperimenthasexactly�
1�
2outcomes.
•Ingeneraliftherearekexperiments,thentotalsamplepointsofcompoundexperimentare:
�
1�
2�
3×⋯×�
??????
20

Example 1:
Statement:Howmanysamplepointsarethereiftwocoinsaretossedtogether?
Solution:Totalno.ofoutcomesthefirstcoinhas=�
1=2,andTotalno.ofoutcomes
thesecondcoinhas=�
2=2,
Therefore,apairofcoinscanlendin:
�
1�
2=2∗2=4��??????���
Thesamplespacewillbeas:
�=????????????,??????�,�??????,��
21

Example 2:
Statement:Howmanysamplepointsarethereifthecompoundexperimentconsistoftossingacoin
andthrowingadietogether?
Solution:Totalpossibleoutcomesthefirstexperiment(coin)has=�
1=2,andTotalpossibleoutcomes
thesecondexperiment(die)has=�
2=6,
Totalsamplepoints:�
1�
2=2×6=12points
22

Example 3:
Statement:Howmanysamplepointsareinthesamplespacewhenapairofdicearethrowntogether?
Solution:thefirstdiecanlendin�
1=6waysandcorrespondingtoeachtheseconddiecanalsolendin
�
2=6ways,thereforeapairofdicecanlendin:
Thus, Sample Space Points are:
�
1�
2=6×6=36points
23

Example 4:
ThreeCoins:Howmanysamplepointsarethereifthreecoinsaretossedatonce?
Solution:Eachofthreecoinscanlendin2possibleways,i.e.HeadandTail,Thus,
�
1=�
2=�
3=2
Thepossiblesituationsare:
ThusSampleSpacePoints:�
1�
2�
3=2×2×2=8points
One Coin
Two
Coins
24

Example 4 (Cont.,)
25
One Coin 2
nd
Coin 3
rd
Coin Combined Outcome
H
T
H
T
H
T
H
T
H
T
H
T
H
T
HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

Example 5:
TwoCoinsandOneDie:
Solution:Eachoftwocoinshasexactlytwopossibleoutcomes,i.e.�
1=�
2=2,and
onediehasexactly6possibleoutcomes,i.e.�
3=6,thusthepossiblesituationsare:
ThuspossibleSamplePoints:�
1�
2�
3=2×2×6=24points
Two Coins
One Die
26

Practice Questions:
1.Howmanysamplepointsareinthesamplespace,whenapairofdiceandone
coinarethrowntogether?
2.Howmanysamplepointsareinthesamplespacewhenthreedicearethrown
together?
3.Howmanysamplepointsareinthesamplespacewhenfourcoinsarethrown
together?
4.Ifanexperimentconsistsofthrowingadieandthendrawingaletteratrandom
fromtheEnglishalphabet,howmanypointsarethereinthesamplespace?
27

2. Rule of Permutation:
•Apermutationisanyorderedsubsetof�objectsfromasetof�distinctobjects.
OR
•Apermutationisanarrangementofallorpartofasetofobjects.
•Thenumberofpermutationsof�objectsis�!(�����������??????�??????).
•Thenumberofpermutationsof�distinctobjectstaken�atatimeisdenotedbysymbol
??????
??????
??????,is
definedas:
??????
??????
??????=
??????!
??????−??????!
, �≤�
Where�!=�(�−1)(�−2)…3×2×1,itisrelevanttonotethat1!=1andthatwedefine0!=
1.
28

3. Rule of Combination:
•Acombinationisanysubsetof�objects,selectingwithoutregardingtheirorder,fromasetof�
distinctobjects.
•Thenumberofcombinationsof�distinctobjectstaken�atatimeisdenotedbysymbol
??????
??????
??????or
??????
??????
(read“���”or“�������"),isdefinedas:
??????
??????
??????=
??????!
??????!??????−??????!
Where�≤�.
29

Example 1:
Inoneyear,threeawards(research,teaching,andservice)willbegiventoaclassof25graduatestudents
inastatisticsdepartment.Ifeachstudentcanreceiveatmostoneaward,howmanypossibleselections
arethere?
Solution:Given�=25,�=3,
Sincetheawardsaredistinguishable,itisapermutationproblem.Thetotalnumberofsamplepointsis:
??????
??????
??????=
�!
�−�!
=
25!
25−3!
=
22!×23×24×25
22!
=(23)2425=13,800
30

Example 2:
Ayoungboyaskshismothertoget5Game-Boycartridgesfromhiscollectionof10cartridgesand5sports
games.Howmanywaysaretherethathismothercanget3cartridgesand2sportsgames?
Solution:Thenumberofwaysofselecting3cartridgesfrom10is:
??????
??????
??????=
??????!
??????!??????−??????!
10
�
3=
10!
3!10−3!
=
7!×8×9×10
1×2×3×7!
=
(8)(9)(10)
(1)(2)(3)
=120
31

Example 2 (cont.):
Solution:Thenumberofwaysofselecting2cartridgesfrom5is:
??????
??????
??????=
??????!
??????!??????−??????!
5
�
2=
5!
2!5−2!
=
3!×4×5
1×2×3!
=10
32

Example 3:
•Fromastudentclubconsistingof50people.Howmanydifferentchoicesofofficersarepossibleif:
a)3membersarechosenrandomly.
b)presidentandatreasureraretobechosen.
Solution:a)Given�=50,�=3,since3membersaretobechosenatrandom,itiscombination
problem.Thetotalno.ofsamplepointsare:
50
�
3=
50!
3!50−3!
=
47!×48×49×50
1×2×3×47!
=
(48)(49)(50)
(1)(2)(3)
=19,600
33

Example 3 (cont,):
b)presidentandatreasureraretobechosen.
Solution:Given�=50,�=2,sincepresidentandtreasureraredistinguishable,itispermutation
problem.Thetotalno.ofsamplepointsare:
50
??????
2=
50!
50−2!
=
48!×49×50
48!
=4950=2450
34

Practice Questions:
1.Howmanywaysaretheretoselect3candidatesfrom8equallyqualifiedrecentgraduatesfor
openingsinanaccountingfirm?
2.Inhowmanydifferentwayscanatrue-falsetestconsistingof9questionsbeanswered?
3.Adrugforthereliefofasthmacanbepurchasedfrom5differentmanufacturersinliquid,tablet,or
capsuleform,allofwhichcomeinregularandextrastrength.Howmanydifferentwayscanadoctor
prescribethedrugforapatientsufferingfromasthma?
35

36
ANY QUESTION
Tags