Lectures on Network Theorems (Circuits )

sailash2 1,897 views 71 slides May 28, 2024
Slide 1
Slide 1 of 71
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71

About This Presentation

Network Theorems


Slide Content

ELL 100 -Introduction to Electrical Engineering
LECTURE7: NETWORKTHEOREMS
THEVENIN& NORTONEQUIVALENTS

❑Introduction
❑Thevenin’stheorem
❑Norton’s theorem
❑Numerical Examples
2
Outline

INTRODUCTION
3
Thevenin’sTheoremApplication
•Itoftenoccursinpracticethataparticularelementinacircuitis
variable(usuallycalledtheload)whileotherelementsarefixed.
•Asatypicalexample,ahouseholdoutletterminalmaybeconnected
todifferentappliancesconstitutingavariableload.
•Eachtimethevariableelementischanged,theentirecircuithastobe
analyzedalloveragain.
•Toavoidthisproblem,Thevenin’stheoremprovidesatechniqueby
whichtheentirefixedpartofthecircuitisreplacedbyaverysimple
equivalentofavoltagesourceinserieswithanimpedence.

INTRODUCTION
4
Thevenin’sTheoremApplicationExample

INTRODUCTION
5
Thevenin’sTheorem
V
th= Thevenin’sequivalent voltage
voltage R
th= Thevenin’sequivalent resistance + -
+
-
V1
V2
I1
R2
R1
R3 R4
R5
R6 Load Terminals
A
B +
-
A
B
Vth
Rth
Load Terminals
Theveninequivalent circuit

INTRODUCTION
6
Thevenin’sTheoremapplicationareas

INTRODUCTION
7
Thevenin’sTheoremapplicationareas

10 kΩ
μApeak

THEVENIN’STHEOREM
8
Statement:Alineartwo-terminalcircuitcanbereplacedbyan
equivalentcircuitconsistingofavoltagesourceV
Thinserieswitha
resistorR
Th,whereV
Thistheopen-circuitvoltageattheterminalsand
R
Thistheinputorequivalentresistanceattheterminalswhenthe
independentsourcesareturnedoff.
LinearCircuit:Alinearcircuitisonewhoseoutputislinearlyrelated
(ordirectlyproportional)toitsinputi.e.containingonlylinear
elementseg.R,L,C,transformer

THEVENIN’STHEOREM
9
HowtofindTheveninequivalentvoltageV
ThandresistanceR
Th?
•Thetwocircuitsgivenbelowaresaidtobeequivalentiftheyhave
thesamevoltage-currentrelationattheirterminals.
(a)OriginalCircuit (b)Theveninequivalentcircuit

THEVENIN’STHEOREM
10
•Iftheterminalsa-baremadeopen-circuited(byremovingtheload),no
currentflows,thentheopencircuitvoltageacrosstheterminalsa-bis
equaltothevoltagesourceV
Th.
•Thus,V
Thistheopen-circuitvoltageacrosstheterminali.e.V
Th=v
oc
•Theinputresistance(orequivalentresistance)ofthedeadcircuit(all
independentsourcesturnedoff)attheterminalsa-bintheFig(a)must
beequaltoR
ThinFig.(b)(inputresistancewithV
Thturnedoff).
•Thus,R
Thistheinputresistanceattheterminalswhenthe
independentsourcesareturnedoff,i.e.R
Th=R
in

THEVENIN’STHEOREM
11
FindingtheTheveninequivalentresistanceR
Th:
Case1:WhenthenetworkshasnoDependentSources
•Turnoffalltheindependentsources,thenR
Thistheinputresistance
ofthenetworklookingbetweenterminalsaandb.
Case2:WhenthenetworkshasDependentSources
•Turn off all independent sources, apply voltage source v
oacross
terminals a-b and determine the resulting current i
o. Then R
Th= v
o∕ i
o.
•Alternatively,insertacurrentsourcei
oacrossterminalsa-bandfind
theterminalvoltagev
o.AgainR
Th=v
o∕i
o.

THEVENIN’STHEOREM
12
StepstodetermineThevenin’sEquivalentResistance(R
TH)
andVoltage(V
TH):
•RemoveloadresistorR
Loranycomponentconnectedacrossthe
terminalsa-bthroughwhichTheveninequivalentisrequired.
•DetermineR
THbyshortingallvoltagesourcesandopen-
circuitingallcurrentsources,andthencalculatingthecircuit’stotal
resistanceasseenfromtheopenterminalsa-b.
•DetermineV
THbycalculatingthevoltagebetweenopen
terminalsa-b(byusualcircuitanalysismethods).

THEVENIN’STHEOREM
13
Example:TofindTheveninequivalentbetweenterminals‘a’and‘b’
Case1:Nodependentsource

b
20Ω
10Ω10Ω
20Ω10Ω
10Ω
a THEVENIN’STHEOREM
14
Step1:Removealltheindependentsources.
a)Replacevoltagesourcebyshortcircuit
b)Replacecurrentsourcebyopencircuit

THEVENIN’STHEOREM
15
Step2:FindingR
Thb
20Ω
10Ω10Ω
20Ω10Ω
10Ω
a b
10Ω10Ω
10Ω10Ω
10Ω
a

THEVENIN’STHEOREM
16
Step2:FindingR
Thb
10Ω10Ω
10Ω10Ω
10Ω
a b
10Ω
30Ω
30Ω
10Ω
a
30Ω
StartoDeltatransformation

THEVENIN’STHEOREM
17
Step2:FindingR
Thb
10Ω
30Ω
30Ω
10Ω
a
30Ω 30Ω
7.5Ω
a
7.5Ω
b 30Ω
15Ω
a b
R
Th=30||15=10Ω

THEVENIN’STHEOREM
18
Step3:FindingV
Th
SourceTransformationsb
10Ω10Ω
10Ω10Ω
10Ω
a
i1 i230V
50V
10V

THEVENIN’STHEOREM
19
Step3:FindingV
Th
Forloop1:
Forloop2:
Onsolving(1)and(2),i
1=0,i
2=2A12
12
305030100
23(1)
ii
ii

 21
12
501030100
63(2)
ii
ii

 b
10Ω10Ω
10Ω10Ω
10Ω
a
i1 i230V
50V
10V

THEVENIN’STHEOREM
20
Step3:FindingV
Th
ApplyingKVLtotheoutputloop,
Therefore,12
1030100
10 V
ab
ab
vii
v

 10 V
Thab
Vv
TheveninEquivalent Circuit

THEVENIN’STHEOREM
21
Example:TofindTheveninequivalentbetweenterminal‘a’and‘b’
Case2:Withdependentsource
Turn off all
independent sources,
apply voltage source
v
0at terminals aand b
and determine the
resulting current i
0.
Then R
Th= v
0 ∕i
0.

THEVENIN’STHEOREM
22
Step1.Removedependentsources
5Acurrentsourceisreplacedbyopencircuitandsetv
0=1V.

THEVENIN’STHEOREM
23
Step2.FindR
Th
KVLforloop1:
But,
Therefore,

THEVENIN’STHEOREM
24
Meshanalysisforloop2and3,
Onsolvingweget,i
0=−i
3=1/6A.
Therefore,

THEVENIN’STHEOREM
25
Step3.FindV
Th
Wehavetofindv
ocforthiscircuit.
Applyingmeshanalysisweget,
and

THEVENIN’STHEOREM
26
TheTheveninequivalentcircuitisshownbelow.
Onsolving(1),(2),(3)and(4),weget,i
2=10/3=>

NORTON’STHEOREM
27
Statement:Alineartwo-terminalcircuitcanbereplacedbyan
equivalentcircuitconsistingofacurrentsourceI
Ninparallelwitha
resistorR
N,whereI
Nistheshort-circuitcurrentthroughthe
terminalsandR
Nistheinputorequivalentresistanceatthe
terminalswhentheindependentsourcesareturnedoff.
WhyareweusingNorton’sTheorem?
•Simplifiesthenetworkintermsofcurrentsinsteadofvoltages.
•Itreducesanetworktoasimpleparallelcircuitwithacurrent
sourceandaresistor.

NORTON’STHEOREM
28
Original circuit Norton equivalent circuit

NORTON’STHEOREM
29
StepstodetermineNorton’sequivalentResistance(R
N)
andCurrent(I
N):
•CalculateR
NinthesamewayasR
Th.
•Usingsourcetransformation,theTheveninandNorton
resistancesareequali.e.R
N=R
Th.
•TofindtheNortoncurrentI
N,wedeterminetheshort-circuit
currentflowingfromterminalatob.
•Thisshort-circuitcurrentistheNortonequivalentcurrentI
N.

NORTON’STHEOREM
30
CloserelationshipbetweenNorton’sandThevenin’stheorems:

NORTON’STHEOREM
31
SinceV
Th,I
N,andR
Th/Narerelated,todeterminetheTheveninor
Nortonequivalentcircuitwefind:
•Theopen-circuitvoltagev
ocacrossterminalsaandb(=V
Th)
•Theshort-circuitcurrenti
scatterminalsaandb(=I
N)
•TheequivalentinputresistanceR
inatterminalsaandb
whenallindependentsourcesareturnedoff(=R
Th/N)

NORTON’STHEOREM
32
ExampleofNortonTheorem
Case1:Withoutdependentsource
I
Norton= (28/4) + (7/1) = 14 A
R
Norton= (4||1) = 0.8 Ω

NORTON’STHEOREM
33
ExampleofNortonTheorem
Case2:Withdependentsource

NORTON’STHEOREM
34
Step1:ComputeR
N.Setthe
independentsourcesequaltozero
andconnectavoltagesourcev
0=1V
totheterminals.
Weignorethe4-Ωresistorbecauseit
isshort-circuited.Hence,i
x=0.
Alsoduetotheshortcircuit,the5-Ω
resistor,thevoltagesource,andthe
dependentcurrentsourceareallin
parallel.

NORTON’STHEOREM
35
Step2:ComputeI
N.Short-circuit
terminalsaandbandfindthecurrenti
sc,
asindicatedinthefigure.
Notefromthisfigurethatthe4Ω
resistor,the10Vvoltagesource,the5Ω
resistor,andthedependentcurrent
sourceareallinparallel.
Hence,
KCL at node a:

NORTON’STHEOREM
36
7A = 5Ω
Original circuit Norton equivalent

NUMERICAL
37
Q1.FindtheTheveninequivalentofthecircuitshownbelowacross
terminalsa-b.ThenfindthecurrentthroughR
L=6Ωand36Ωrespectively.

NUMERICAL
38
Soln:
Step1.FindR
Thbyturningoff
the32Vvoltagesource
(replacingitwithashortcircuit)
andthe2Acurrentsource
(replacingitwithopencircuit).

NUMERICAL
39
Step2.Makea-bopencircuit.FindV
Thbyapplyingmesh/nodeanalysis.
=>i
1=0.5A

NUMERICAL
40
Step 3. Finding current through R
L
a)WhenR
L=6Ω
a)WhenR
L=36Ω
Theveninequivalentcircuit

NUMERICAL
41
Q2.FindtheTheveninequivalentofthegivencircuitatterminalsa-b.

NUMERICAL
42
Soln:
Step1.FindR
Th.Weexcitethecircuitwith1Acurrentsource.
Thereducedcircuitisshown
= 1 A

NUMERICAL
43
KCLatnodea:
Alsowehave,
Substituting(2)in(1),wehave
= 1A
Negativesigninresistanceindicatesthat
thecircuitissupplyingpower.Resistors
cannotsupplypower,it’sthedependent
currentsourcethatsuppliespower.

NUMERICAL
44
Step2:FindingV
Th
=>i
1=i
x
=>ν
ab=-2i
x=-4i
x
=>ν
ab=i
x=0
=>V
Th=ν
ab=0
i
1
KCL at node a:
i
1+ i
x= 2i
x
Sincewedon’thaveanyindependent
sourcesinthegivencircuit,thevalueof
TheveninequivalentvoltageV
Thiszero.
Thus,theTheveninequivalentcircuitisjustanegative(-4Ω)
resistanceacrossa-bi.e.a“dependentvoltagesource”withν
ab=4i
ba

NUMERICAL
45
Q3.FindtheTheveninequivalentofthegivencircuitatterminalsa-b.

NUMERICAL
46
Soln:
Step 1. Finding V
Th.
Applying KVL to the loop,
= 0
But V
o = 10kI ,

NUMERICAL
47
Step2:TofindR
Th,removeindependentvoltagesource70Vandapplya
1-Vindependentsourcetoexcitethecircuitattheterminalsa-b
Wehave
And

NUMERICAL
48
Q4.DeterminetheTheveninequivalentcircuitbetweenterminalsa-b.

NUMERICAL
49
Soln:
Step1:FindingR
Th.
Removeindependentsources
i.ereplacevoltagesourceby
shortcircuitandcurrent
sourcebyopencircuit.
Thenwehave,

NUMERICAL
50
Step2:FindingV
Th.
KCLatnode1:
KCLatnode2:
Solving(1)and(2),
=>

NUMERICAL
51
Q5.FindtheTheveninandNortonequivalentsatterminalsa-b
ofthecircuitshownbelow.

NUMERICAL
52
Soln:
Step1:FindingR
Th/N.Replacecurrentsourcesbyopen-circuitsand
voltagesourcebyshort-circuit.
Step2:FindingV
Th.Applysourcetransformationto1Acurrentsource
andapplynodalanalysis.20 5
5 (14 6)
20 5
4
Th
Th N
R
RR

  

   146
3
1465
8V
Th Th
Th
VV
V




||

NUMERICAL
53
And,
Therefore,IN = 2 A
RN = 4 Ω
a
b
Thevenin
Equivalent Circuit
Norton Equivalent
CircuitVTh = 8 V
+
_
RTh = 4 Ω
a
b

NUMERICAL
54
Q6.FindtheNortonequivalentatterminalsa-bofthecircuitshown.

NUMERICAL
55
Soln:
Step1:FindingR
N.
Settheindependentsources
tozero.Thisleadstothe
reducedcircuitshown.
Thus,

NUMERICAL
56
Step2:FindingI
N.Short-circuitterminalsaandb.
Ignorethe5-Ωresistorbecauseithasbeenshort-circuited.
Applyingmeshanalysis,
Onsolving,wegetIN = 1 A
RN = 4 Ω
a
b
Norton’s Equivalent

UNSOLVEDNUMERICAL
57
Q1.UsingThevenin’stheorem,findtheequivalentcircuittotheleftofthe
terminalsinthecircuitbelow.ThenfindI.
Ans:V
Th=90V,R
Th=45Ω,I=1.5A.

UNSOLVEDNUMERICAL
58
Q2.FindtheTheveninequivalentcircuitofthecircuitshownbelowtothe
leftoftheterminals.
Ans:V
Th=5.333V,R
Th=444.4mΩ.

UNSOLVEDNUMERICAL
59
Q3.DeterminetheTheveninequivalentcircuitshownbelow,asseenbythe
7Ωresistor.Thencalculatethecurrentflowingthroughthe7Ωresistor.
Ans:V
Th=80V,R
Th=9.069Ω.

UNSOLVEDNUMERICAL
60
Q4.ObtaintheTheveninequivalentatterminalsa-bofthecircuitshown
below.
Ans:V
Th=38V,R
Th=20Ω.

UNSOLVEDNUMERICAL
61
Q5.FindNortonequivalentresistanceR
NandcurrentI
Natterminalsa-bof
thecircuitshownbelow.
Ans:I
N=4.5A,R
N=90Ω.

UNSOLVEDNUMERICAL
62
Q6.FindtheNortonequivalentwithrespecttoterminalsa-binthecircuit
shownbelow.
Ans:I
N=666.67mA,R
N=10Ω.

UNSOLVEDNUMERICAL
63
Q7.FindNortonequivalentresistanceR
NandcurrentI
Natterminalsa-bof
thecircuitshownbelow.
Ans:I
N=10A,R
N=1Ω.

UNSOLVEDNUMERICAL
64
Q8.DeterminetheNortonequivalentatterminalsa-bforthecircuitbelow.
Ans:I
N=3A,R
N=-4Ω.

UNSOLVEDNUMERICAL
65
Q9.ObtaintheNortonequivalentofthecircuitinfigshownbelow,tothe
leftofterminalsa-b.Usetheresulttofindcurrenti.
Ans:I
N=-0.4A,R
N=10Ω,i=2.4A.

UNSOLVEDNUMERICAL
66
Q10.GiventhecircuitinFigbelow,obtaintheNortonequivalentasviewed
fromterminals:(a)a-b(b)c-d.
Ans:(a)I
N=7A,R
N=R
Th=2Ω,V
Th=14V.(b)I
N=12.667A,R
N=R
Th=1.5Ω,V
Th=19V.

UNSOLVEDNUMERICAL
67
Q11.ObtaintheNortonequivalentatterminalsa-bofthecircuitinFig.
Ans:I
N=-20mA,R
N=100kΩ.

UNSOLVEDNUMERICAL
68
Q12.UseNorton’stheoremtofindVointhecircuitofFig.
Ans:I
N=-1mA,R
N=20kΩ.

UNSOLVEDNUMERICAL
69
Q13.ObtaintheTheveninandNortonequivalentcircuitsatterminalsa-bfor
thecircuitinFig.
Ans:(a)I
N=16.667A,R
N=R
Th=10Ω,V
Th=166.67V.

UNSOLVEDNUMERICAL
70
Q14.DeterminetheTheveninandNortonequivalentsatterminalsa-bofthe
circuitinFig.
Ans:(a)I
N=1.7778A,R
N=R
Th=22.5Ω,V
Th=40V.

REFERENCES
71
1.EdwardHughes;JohnHiley,KeithBrown,IanMcKenzieSmith,
“ElectricalandElectronicTechnology”,10thedition,PearsonEducation
Limited,Year:2008.
2.Alexander,CharlesK.,andSadiku,MatthewN.O.,“Fundamentalsof
ElectricCircuits”,5thEd,McGrawHill,IndianEdition,2013.
Tags