INTRODUCTION
5
Thevenin’sTheorem
V
th= Thevenin’sequivalent voltage
voltage R
th= Thevenin’sequivalent resistance + -
+
-
V1
V2
I1
R2
R1
R3 R4
R5
R6 Load Terminals
A
B +
-
A
B
Vth
Rth
Load Terminals
Theveninequivalent circuit
THEVENIN’STHEOREM
11
FindingtheTheveninequivalentresistanceR
Th:
Case1:WhenthenetworkshasnoDependentSources
•Turnoffalltheindependentsources,thenR
Thistheinputresistance
ofthenetworklookingbetweenterminalsaandb.
Case2:WhenthenetworkshasDependentSources
•Turn off all independent sources, apply voltage source v
oacross
terminals a-b and determine the resulting current i
o. Then R
Th= v
o∕ i
o.
•Alternatively,insertacurrentsourcei
oacrossterminalsa-bandfind
theterminalvoltagev
o.AgainR
Th=v
o∕i
o.
THEVENIN’STHEOREM
19
Step3:FindingV
Th
Forloop1:
Forloop2:
Onsolving(1)and(2),i
1=0,i
2=2A12
12
305030100
23(1)
ii
ii
21
12
501030100
63(2)
ii
ii
b
10Ω10Ω
10Ω10Ω
10Ω
a
i1 i230V
50V
10V
THEVENIN’STHEOREM
20
Step3:FindingV
Th
ApplyingKVLtotheoutputloop,
Therefore,12
1030100
10 V
ab
ab
vii
v
10 V
Thab
Vv
TheveninEquivalent Circuit
THEVENIN’STHEOREM
21
Example:TofindTheveninequivalentbetweenterminal‘a’and‘b’
Case2:Withdependentsource
Turn off all
independent sources,
apply voltage source
v
0at terminals aand b
and determine the
resulting current i
0.
Then R
Th= v
0 ∕i
0.
NUMERICAL
44
Step2:FindingV
Th
=>i
1=i
x
=>ν
ab=-2i
x=-4i
x
=>ν
ab=i
x=0
=>V
Th=ν
ab=0
i
1
KCL at node a:
i
1+ i
x= 2i
x
Sincewedon’thaveanyindependent
sourcesinthegivencircuit,thevalueof
TheveninequivalentvoltageV
Thiszero.
Thus,theTheveninequivalentcircuitisjustanegative(-4Ω)
resistanceacrossa-bi.e.a“dependentvoltagesource”withν
ab=4i
ba