Lesson 2 derivative of inverse trigonometric functions
phaxawayako28
1,939 views
11 slides
Jul 18, 2015
Slide 1 of 11
1
2
3
4
5
6
7
8
9
10
11
About This Presentation
Part of Mapua (MIT) Syllabus Content
Size: 1.06 MB
Language: en
Added: Jul 18, 2015
Slides: 11 pages
Slide Content
DIFFERENTIATION OF
INVERSE TRIGONOMETRIC
FUNCTIONS
TRANSCENDENTAL FUNCTIONS
Kinds of transcendental functions:
1.logarithmic and exponential functions
2.trigonometric and inverse trigonometric
functions
3.hyperbolic and inverse hyperbolic functions
Note:
Each pair of functions above is an inverse to
each other.
The INVERSE TRIGONOMETRIC FUNCTIONS
.
x. is sine whoseangle the isy mean also This
xsiny or x arcsin yby denoted
x of function sineinverse the called isy x y sin
relation theby determined x of function a isy if
Functions ric Trigonomet Inverse of Properties and s Definition
callRe
1-
·
==
®=
·
-1x if 0 y
2
π
- or
1x if π/2 y0 :where x ycsc if x
1
cscy
-1x if yπ/2 or
1x if π/2 y0 :where x ysec if x
1-
secy
πy0 :where x ycot if x
1
coty
π/2yπ/2- :where x ytan if x
1
tany
πy0 :where x cos y if x
1
cosy
π/2yπ/2 - :where x ysin if x
1
siny
:sdefinition following the are these general, In
£<£
³£<===>
-
=
££<
³<£===>=
<<===>
-
=
<<===>
-
=
££===>
-
=
££===>
-
=
p
DIFFERENTIATION FORMULA
Derivative of Inverse Trigonometric Function
( )
( )
functions. ric trigonomet
other the for formulas the derive can wemanner similarIn
x-1
1
dx
xsind
xsiny but
x-1
1
dx
dy
x-1ysin-1y cos :identity the from
y cos
1
dx
dy
or
dy
dx
ycos
:y to respect withting ifferentiaD
2
y
2
- wherexy sin function
ric trigonomet inverse of definition the use we,xsiny of derivative the finding In
2
1-
1-
2
22
-1
dx
du
u-1
1
usin
dx
d
Therefore
2
1-
=
=®==
==
==
££=®
=
pp
DIFFERENTIATION FORMULA
Derivative of Inverse Trigonometric Function
( )
( )
( )
( )
( )
( )
dx
du
1uu
1
ucsc
dx
d
6.
dx
du
1uu
1
usec
dx
d
5.
dx
du
u1
1
ucot
dx
d
4.
dx
du
u1
1
utan
dx
d
3.
dx
du
u1
1
ucos
dx
d
2.
dx
du
u1
1
usin
dx
d
1.
:functions ric trigonomet inverse for formulas ation Differenti
2
1
2
1
2
1
2
1
2
1
2
1
-
-=
-
=
+
-=
+
=
-
-=
-
=
-
-
-
-
-
-