Lesson4 Probability of an event [Autosaved].pdf

hebaelkouly 56 views 85 slides Oct 11, 2024
Slide 1
Slide 1 of 85
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85

About This Presentation

esson4 Probability of an event [Autosaved].pdf


Slide Content

ةعماج فيوس ينب
Probability and Statistics for Engineers

Probability
Chapter 2: Lesson 2

2.4.ProbabilityofanEvent:Textbookpage48
·Toeverypoint(outcome)inthesample
spaceofanexperimentS,weassigna
weight(orprobability),rangingfrom0to1,
suchthatthesumofallweights
(probabilities)equals1.
·Theweight(orprobability)ofanoutcome
measuresitslikelihood(chance)of
occurrence.
·TofindtheprobabilityofaneventA,we
sumallprobabilitiesofthesamplepoints
inA.Thissumiscalledtheprobabilityof
theeventAandisdenotedbyP(A).

Definition2.8:
TheprobabilityofaneventAisthesumof
theweights(probabilities)ofallsample
pointsinA.Therefore,()10 AP
1)()1=SP
2)()0=P
3)

Example2.22:
Abalancedcoinistossedtwice.Whatisthe
probabilitythatatleastoneheadoccurs?
Solution:
S={HH,HT,TH,TT}
A={atleastoneheadoccurs}={HH,HT,TH}
Sincethecoinisbalanced,theoutcomesare
equallylikely;i.e.,alloutcomeshavethe
sameweightorprobability.

Outcome Weight
(Probability)
4w=1w=1/4=0.25
P(HH)=P(HT)=P(TH)=P(TT)=0.25HH
HT
TH
TT
P(HH) = w
P(HT) = w
P(TH) = w
P(TT) = w
sum 4w=1

Theprobabilitythatatleastonehead
occursis:
P(A)=P({atleastoneheadoccurs})=P({HH,
HT,TH})
=P(HH)+P(HT)+P(TH)
=0.25+0.25+0.25
=0.75

Sinoutcomesofno
Ainoutcomesofno
N
An
Sn
An
AP
.
.)(
)(
)(
)( === Theorem2.9:
Ifanexperimenthasn(S)=Nequallylikely
differentoutcomes,thentheprobabilityof
theeventAis:

Example2.25:
Amixtureofcandiesconsistsof6mints,4
toffees,and3chocolates.Ifapersonmakes
arandomselectionofoneofthesecandies,
findtheprobabilityofgetting:
(a)amint
(b)atoffeeorchocolate.
Solution:
Definethefollowingevents:
M={gettingamint}
T={gettingatoffee}
C={gettingachocolate}

Experiment:selectingacandyatrandom
from13candies
n(S)=no.ofoutcomesoftheexperimentof
selectingacandy.
=no.ofdifferentwaysofselectinga
candyfrom13candies.13
1
13
=





=

Theoutcomesoftheexperimentare
equallylikelybecausetheselectionismade
atrandom.
(a)M={gettingamint}
n(M)=no.ofdifferentwaysofselecting
amintcandyfrom6mintcandies6
1
6
=





=
P(M)=P({gettingamint})=()
()13
6
=
Sn
Mn

+





=
1
4 734
1
3
=+=




 (b)TC={gettingatoffeeorchocolate}
n(TC)=no.ofdifferentwaysof
selectingatoffeeorachocolate
candy
=no.ofdifferentwaysofselecting
atoffeecandy+no.ofdifferent
waysofselectingchocolate
candy

=no.ofdifferentwaysof
selectingacandyfrom7candies7
1
7
=





=
P(TC)=P({gettingatoffeeorchocolate})
=( )
()13
7
=

Sn
CTn

Example2.26:
In a poker hand consisting of 5cards, find
the probability of holding 2aces and 3jacks.

Example2.26:
In a poker hand consisting of 5cards, find
the probability of holding 2aces and 3jacks.
Solution:
Experiment:selecting5cardsfrom52cards.
n(S)=no.ofoutcomesoftheexperimentof
selecting5cardsfrom52cards.2598960
!47!5
!52
5
52
=

=





=

Theoutcomesoftheexperimentareequally
likelybecausetheselectionismadeat
random.
DefinetheeventA={holding2acesand3
jacks}
n(A)=no.ofwaysofselecting2acesand3
jacks
=(no.ofwaysofselecting2aces)(no.
ofwaysofselecting3jacks)
=(no.ofwaysofselecting2acesfrom4
aces)(no.ofwaysofselecting3
jacksfrom4jacks)







=
2
4 





3
4 !2!2
!4

=
2446
!1!3
!4
==

P(A )= P({holding 2 aces and 3 jacks })()
()
000009.0
2598960
24
===
Sn
An

Additive Rule

2.5AdditiveRules:
Theorem2.10:
IfAandBareanytwoevents,then:
P(AB)= P(A) + P(B) −P(AB)
Corollary1:
IfAandBaremutuallyexclusive(disjoint)
events,then:
P(AB)= P(A) + P(B)

Corollary2:
IfA
1
,A
2
,…,A
n
arenmutuallyexclusive
(disjoint)events,then:
P(A
1
A
2
… A
n
)= P(A
1
) + P(A
2
) +… + P(A
n
)()
==
=
n
i
i
n
i
i APAP
11
)(

Corollary 3:
If A
1, A
2, …, A
nis a partition of sample space
S, then
P(A
1A
2….A
n) =
P(A
1) + P(A
2) …+ P(A
n) = P(S) = 1.

Note: Two event Problems:
Total area= P(S)=1* In Venn diagrams,
considerthe probability of an event A as
theareaoftheregioncorrespondingtothe
eventA.
* Total area= P(S)=1
Total area= P(S)=1

*Examples:
P(A)= P(AB)+ P(AB
C
)
P(AB)= P(A) + P(A
C
B)
P(AB)= P(A) + P(B) −P(AB)
P(AB
C
)= P(A) −P(AB)
P(A
C
B
C
)=1−P(AB)
etc.,

Example2.27:
TheprobabilitythatPaulapasses
Mathematicsis2/3,andtheprobabilitythat
shepassesEnglishis4/9.Iftheprobability
thatshepassesbothcoursesis1/4,whatis
theprobabilitythatshewill:
(a)passatleastonecourse?
(b)passMathematicsandfailEnglish?
(c)failbothcourses?

Solution:
Define the events:
M={Paula passes Mathematics}
E={Paula passes English}
We know that P(M)=2/3, P(E)=4/9, and
P(ME)=1/4.
(a)Probability of passing at least one
course is:
P(ME)= P(M) + P(E) −P(ME)36
31
4
1
9
4
3
2
=−+=

(b)ProbabilityofpassingMathematicsand
failingEnglishis:
P(ME
C
)=P(M)−P(ME)12
5
4
1
3
2
=−=
(c)Probabilityoffailingbothcoursesis:
P(M
C
E
C
)=1−P(ME)36
5
36
31
1 =−=

Theorem2.12:
IfAandA
C
arecomplementaryevents,
then:
P(A) + P(A
C
) = 1 P(A
C
) = 1 −P(A)
Proof: Since A U A
C
= S and the sets A and A
C
are disjoint, then
1 = P(S) = P(A U A
C
) = P(A) + P(A
C
).

Example2.31Iftheprobabilitiesthatan
automobilemechanicwillservice3,4,5,6,7,or
8ormorecarsonanygivenworkdayare,
respectively,0.12,0.19,0.28,0.24,0.10,and
0.07,whatistheprobabilitythathewillservice
atleast5carsonhisnextdayatwork?

Solution: Let Ebe the event that at least 5 cars
are serviced. Now, P(E) = 1 —P(E
c
),
where E
c
is the event that fewer than 5 cars are
serviced. Since
P(E
c
) = 0.12+ 0.19 = 0.31,
it follows from Theorem 2.12 that
P(E) = 1 -0.31 = 0.69.

Example2.32Supposethemanufacturer
specificationsofthelengthofacertaintypeof
computercableare2000±10millimeters.In
thisindustry,itisknownthatsmallcableisjust
aslikelytobedefective(notmeeting
specifications)aslargecable.Thatis,the
probabilityofrandomlyproducingacablewith
lengthexceeding2010millimeters

isequaltotheprobabilityofproducingacable
withlengthsmallerthan1990millimeters.The
probabilitythattheproductionproceduremeets
specificationsisknowntobe0.99.
(a)Whatistheprobabilitythatacableselected
randomlyistoolarge?
(b)Whatistheprobabilitythatarandomly
selectedcableislargerthan1990
millimeters?

Solution:LetMbetheeventthatacablemeets
specifications.LetSandLbetheevents
thatthecableistoosmallandtoolarge,
respectively.Then
(a)P(M)=0.99andP(S)=P(L)= =0.005.
(b)DenotingbyXthelengthofarandomly
selectedcable,wehave2
99.01−

P(1990<X<2010)=P(M)=0.99.
SinceP(X>2010)=P(L)=0.005
then
P(X>1990)=P(M)+P(L)=0.995.
ThisalsocanbesolvedbyusingTheorem2.12:
P(X>1990)+P(X<1990)=1.
Thus,P(X>1990)=1–P(S)
=1-0.005=0.995.

Exercise

Exercise

Exercise

Exercise

Conditional
Probability

The probability of an event Boccurring
when it is known that some event Ahas
occurred is called a conditional
probabilityand is denoted by P(B|A). The
symbol P (B | A) is usually read "the
probability that Boccurs given that A
occurs"
or simply "the probability of B, given A."

Definition 2.9: The conditional probability
of B, given A, denoted by P(B|A)is defined
by
??????(&#3627408489;|&#3627408488;)=
)??????(&#3627408384;∩&#3627408385;
)??????(&#3627408384;
provided P(A) > 0.

Example:
Suppose that our sample space Sis
the population of adults in a small
town who have completed the
requirements for a college degree.
We shall categorize them according
to gender and employment status.
The data are given in the following
table.

Employed Unemployed Total
Male 460 40 500
Female 140 260 400
Total 600 300 900

One of these individuals is to be selected
at random for a tour throughout the
country to publicize the advantages of
establishing new industries in the town.
We shall be concerned with the
following events:
M: a man is chosen,
E: the one chosen is employed.
What is ????????????|&#3627408388;?

Solution:
Let )??????(&#3627408384;denote the number of elements in any
set A, then we write
??????(??????|&#3627408388;)=
)??????(??????∩&#3627408492;
)??????(&#3627408492;
=
)??????(??????∩&#3627408492;
)??????(??????
)??????(&#3627408492;
)??????(??????
=
)??????(??????∩&#3627408492;
)??????(&#3627408492;
where )??????(??????∩&#3627408492;and )??????(&#3627408492;are found from the
original sample space S. To verify this result,
note that ??????(&#3627408388;)=
&#3627409364;&#3627409358;&#3627409358;
&#3627409367;&#3627409358;&#3627409358;
=
&#3627409360;
&#3627409361;
,??????(??????∩&#3627408388;)=
&#3627409362;&#3627409364;&#3627409358;
&#3627409367;&#3627409358;&#3627409358;
=
&#3627409360;&#3627409361;
&#3627409362;&#3627409363;
Hence ??????(??????|&#3627408388;)=

&#3627409360;&#3627409361;
&#3627409362;&#3627409363;

&#3627409360;
&#3627409361;
=
&#3627409360;&#3627409361;
&#3627409361;&#3627409358;

The probability that a regularly scheduled
flight departs on time is ??????&#3627408387;=&#3627409358;.&#3627409366;&#3627409361;;
the probability that it arrives on time is ??????&#3627408488;
=&#3627409358;.&#3627409366;2; and the probability that it
departs and arrives on time is ??????&#3627408387;∩&#3627408384;
=&#3627409358;.&#3627409365;&#3627409366;. Find the probability that a plane
(a)arrives on time given that it departed on
time,
(b)departed on time given that it has arrived
on time.

(a)The probability that a plane arrives
on time given that it departed on
time is
??????&#3627408488;|&#3627408491;=
??????&#3627408488;∩&#3627408491;
??????&#3627408491;
=
&#3627409358;.&#3627409365;&#3627409366;
&#3627409358;.&#3627409366;&#3627409361;
=&#3627409358;.&#3627409367;&#3627409362;
(b) The probability that a plane
departed on time given that it has
arrived on time is
??????&#3627408387;|&#3627408384;=
??????&#3627408384;∩&#3627408387;
??????&#3627408384;
=
&#3627409358;.&#3627409365;&#3627409366;
&#3627409358;.&#3627409366;&#3627409360;
=&#3627409358;.&#3627409367;&#3627409363;

Independent Events :
Although conditional probability allows for an
alteration of the probability of an event in the light
of additional material, it also enables us to
understand better the very important concept of
independence or, in the present context,
independent events. Consider the situation where
we have events &#3627408488;and Band ??????&#3627408488;|&#3627408489;=??????&#3627408488;
That is, the occurrence of Bhad no impact on the
odds of occurrence of A.

Definition 2.10:
Two events Aand Bare independent if
and only if
??????&#3627408385;|&#3627408384;=??????&#3627408385;or ??????&#3627408384;|&#3627408385;=??????&#3627408384;,
provided the existences of the
conditional probabilities. Otherwise A
and B are dependent.

Example:
Consider an experiment in which 2cards are
drawn in succession from an ordinary deck,
with replacement. The events are defined as
A: the first card is an ace,
B: the second card is a spade.
Find ??????&#3627408385;|&#3627408384;,??????&#3627408384;|&#3627408385;.

Solution:
Since the first card is replaced, our
sample space for both the first and
second draws consists of 52cards,
containing 4 aces and 13 spades.
Hence
??????&#3627408385;|&#3627408488;=
&#3627409359;&#3627409361;
&#3627409363;&#3627409360;
=
&#3627409359;
&#3627409362;
, ??????&#3627408489;=
&#3627409359;&#3627409361;
&#3627409363;&#3627409360;
then ??????&#3627408385;|&#3627408384;=??????&#3627408385;=
&#3627409359;
&#3627409362;
and ??????&#3627408384;|&#3627408489;=
&#3627409362;
&#3627409363;&#3627409360;
=
&#3627409359;
&#3627409359;&#3627409361;
,??????&#3627408488;=
&#3627409362;
&#3627409363;&#3627409360;
then ??????&#3627408384;|&#3627408489;=??????&#3627408385;=
&#3627409359;
&#3627409359;&#3627409361;

Multiplicative Rules:
Multiplying the formula of
Definition 2.9 by P(A), we obtain
the following important
multiplicative rule, which enables
us to calculate the probability that
two events will both occur.

Theorem 2.13:
If in an experiment the events A
and Bcan both occur, then
??????&#3627408384;∩&#3627408385;=??????&#3627408384;??????&#3627408385;|&#3627408384;
provided P(A) > 0.

Example:
Suppose that we have a fuse box
containing 20 fuses, of which 5 are
defective. If 2 fusesare selected at
random and removed from the box
in succession without replacing the
first, what is the probability that
both fuses are defective?

Solution:
Let Abe the event that the first fuse is
defective and Bthe event that the second
fuse is defective; then we interpret ??????(
)
&#3627408384;
∩&#3627408385;as the event that Aoccurs, and then
Boccurs after Ahas occurred. The
probability of first removing a defective
fuse is
&#3627409359;
&#3627409362;
; then the probability of
removing a second defective fuse from
the remaining 4is
&#3627409362;
&#3627409359;&#3627409367;
. Hence
??????&#3627408384;∩&#3627408489;=
&#3627409359;
&#3627409362;
&#3627409362;
&#3627409359;&#3627409367;
=
&#3627409359;
&#3627409359;&#3627409367;

Theorem 2.14:
Two events Aand Bare independent if and only
if
??????&#3627408384;∩&#3627408385;=??????&#3627408384;??????&#3627408385;
Therefore, to obtain the probability that two
independent events will both occur, we simply
find the product of their individual probabilities.

Example:
An electrical system consists of four
components as illustrated in Figure 1 below.
The system works if components A and Bwork
and either of the components Cor Dwork. The
reliability (probability of working) of each
component is also shown in Figure 1. Find the
probability that
(a)the entire system works, and
(b)the component Cdoes not work, given that
the entire system works. Assume that four
components work independently.

Figure 1: An electrical system
0.9

0.8
0.9
0.8

Solution:
In this configuration of the system, A, B, and
the subsystem Cand Dconstitute
a serial circuit system, whereas the subsystem
Cand Ditself is a parallel circuit system.
(a) Clearly the probability that the entire
system works can be calculated as the
following:

??????&#3627408384;∩&#3627408385;∩&#3627408386;∪&#3627408387;=??????&#3627408384;??????&#3627408385;??????&#3627408386;∪&#3627408387;
=??????&#3627408384;??????&#3627408385;&#3627409359;−??????&#3627408386;

∩&#3627408387;

=??????&#3627408384;??????&#3627408385;&#3627409359;−??????&#3627408386;

??????&#3627408387;

=(&#3627409358;.&#3627409367;)(&#3627409358;.&#3627409367;) )&#3627409359;−(&#3627409359;−(&#3627409358;.&#3627409366;))(&#3627409359;−(&#3627409358;.&#3627409366;)=&#3627409358;.&#3627409365;&#3627409365;&#3627409365;&#3627409364;
The equalities above hold because of the
independence among the four components.

Conditional
Probability -Bayes’
Rule

Theorem 2.15:
If, in an experiment, the events &#3627408384;
&#3627409359;,&#3627408384;
&#3627409360;,…,&#3627408384;
??????
can occur, then
If the events &#3627408384;
&#3627409359;,&#3627408384;
&#3627409360;,…,&#3627408384;
??????are independent, then
??????&#3627408384;
&#3627409359;∩⋯∩&#3627408384;
??????=??????&#3627408384;
&#3627409359;??????&#3627408384;
&#3627409360;…??????&#3627408384;
??????

Example:
Three cards are drawn in succession,
without replacement, from an ordinary
deck of playing cards. Find the
probability that the event ??????(
)
&#3627408384;
&#3627409359;∩&#3627408384;
&#3627409360;
∩&#3627408384;
&#3627409361;occurs, where
&#3627408384;
&#3627409359;is the event that the first card is a red
ace, &#3627408384;
&#3627409360;is the event that the second card
is a 10 or a jack, and &#3627408384;
&#3627409361;is the event that
the third card is greater than 3 but less
than 7.

Solution: First we define the events
&#3627408384;
&#3627409359;:the first card is a red ace,
&#3627408384;
&#3627409360;:the. second card is a 10 or a jack,
&#3627408384;
&#3627409361;:the third card is greater than 3 but less than
7. Now
??????&#3627408384;
&#3627409359;=
&#3627409360;
&#3627409363;&#3627409360;
,??????&#3627408384;
&#3627409360;|&#3627408384;
&#3627409359;=
&#3627409366;
&#3627409363;&#3627409359;
,??????&#3627408384;
&#3627409361;|&#3627408384;
&#3627409359;∩&#3627408384;
&#3627409360;
=
&#3627409359;&#3627409360;
&#3627409363;&#3627409358;
and hence, by Theorem 2.15,
??????&#3627408384;
&#3627409359;∩&#3627408384;
&#3627409360;∩&#3627408384;
&#3627409361;=??????&#3627408384;
&#3627409359;??????&#3627408384;
&#3627409360;|&#3627408384;
&#3627409359;??????&#3627408384;
&#3627409361;|&#3627408384;
&#3627409359;∩&#3627408384;
&#3627409360;
=
&#3627409360;
&#3627409363;&#3627409360;
&#3627409366;
&#3627409363;&#3627409359;
&#3627409359;&#3627409360;
&#3627409363;&#3627409358;
=
&#3627409366;
&#3627409363;&#3627409363;&#3627409360;&#3627409363;

Bayes’Rule:
Consider the following figure













Figure 2:Venn diagram for the events A, E,
and E’

E E’






A

A

Referring to Figure 2, we can write Aas
the union of the two mutually exclusive
events&#3627408388;∩&#3627408384;and &#3627408388;

∩&#3627408384;.Hence
&#3627408384;=&#3627408388;∩&#3627408384;∪&#3627408388;

∩&#3627408384;
and by additive rule and multiplicative
rule, we can write
??????(&#3627408384;)=??????&#3627408388;∩&#3627408384;∪&#3627408388;

∩&#3627408384;
=??????&#3627408388;∩&#3627408384;+??????&#3627408388;

∩&#3627408384;
=??????&#3627408388;??????&#3627408384;|&#3627408388;+??????&#3627408388;

??????&#3627408384;|&#3627408388;

A generalization of the foregoing illustration
to the case where the sample space is
partitioned into ksubsets is covered by the
following theorem, sometimes called the
theorem of total probabilityor the rule of
elimination.

Theorem 2.16:
If, the events &#3627408489;
&#3627409359;,&#3627408489;
&#3627409360;,…,&#3627408489;
??????constitutea
partition of the sample space S such that
??????&#3627408385;
??????≠&#3627409358;for??????=&#3627409359;,&#3627409360;,…,??????
then for any event Aof S,
??????&#3627408384;=σ
??????=&#3627409359;
??????
??????&#3627408385;
??????∩&#3627408384;=σ
??????=&#3627409359;
??????
??????&#3627408385;
????????????&#3627408384;|&#3627408385;
??????.

B2


B1




Bk
Figure 3: Partitioning the sample space S



A

Proof:
Consider the Venn diagram of the figure 3.
The events A is seen to be the union of the
mutually exclusive events
&#3627408385;
&#3627409359;∩&#3627408384;,&#3627408385;
&#3627409360;∩&#3627408384;,…,&#3627408385;
??????∩&#3627408384;
that is
&#3627408488;=&#3627408489;
&#3627409359;∩&#3627408488;∪&#3627408489;
&#3627409360;∩&#3627408488;∪⋯∪&#3627408489;
??????∩&#3627408488;
Using theorem 2.10 (additive rule) and
theorem 2.13 (multiplicative rule) we have

??????&#3627408384;=??????&#3627408385;
&#3627409359;∩&#3627408384;∪&#3627408385;
&#3627409360;∩&#3627408384;∪⋯∪&#3627408385;
??????∩&#3627408384;
=??????&#3627408385;
&#3627409359;∩&#3627408384;+??????&#3627408385;
&#3627409360;∩&#3627408384;+⋯+??????&#3627408385;
??????∩&#3627408384;
=෍
??????=&#3627409359;
??????
??????&#3627408385;
??????∩&#3627408384;=෍
??????=&#3627409359;
&#3627409361;
??????&#3627408385;
????????????&#3627408384;|&#3627408385;
??????

Example:
In certain assembly plant In a certain assembly
plant, three machines,&#3627408385;
&#3627409359;,&#3627408385;
&#3627409360;,&#3627408385;
&#3627409361;, make 30%,
45%, and 25%, respectively, of the products. It
is known from past experience that 2%, 3%,
and 2% of the products made by each machine,
respectively, are defective. Now, suppose that a
finished product is randomly selected. What is
the probability that it is defective?

Solution:
Consider the following events:
A: the product, is defective,
&#3627408385;
&#3627409359;: the product is made by machine &#3627408385;
&#3627409359;,
&#3627408385;
&#3627409360;: the product is made by machine &#3627408385;
&#3627409360;,
&#3627408385;
&#3627409361;: product is made by machine &#3627408385;
&#3627409361;.
Applying the rule of elimination, we can
write
??????&#3627408384;
=??????&#3627408385;
&#3627409359;??????&#3627408384;|&#3627408385;
&#3627409359;+??????&#3627408385;
&#3627409360;??????&#3627408384;|&#3627408385;
&#3627409360;
+??????&#3627408385;
&#3627409361;??????&#3627408384;|&#3627408385;
&#3627409361;

B1 P(A|B1)=0.02
P(B1)=0.3 A
P(B2)=0.45 P(A|B2)=0.03
B2 A
P(B3)=0.25
P(A|B3)=0.02
B3 A
Figure 4:Tree diagram

Referring to the tree diagram of Figure 4, we
find that the three branches give
the probabilities
??????&#3627408385;
&#3627409359;??????&#3627408384;|&#3627408385;
&#3627409359;= (0.3) (0.02) = 0.006.
??????&#3627408385;
&#3627409360;??????&#3627408384;|&#3627408385;
&#3627409360;= (0.45)(0.03) = 0.0135,
??????&#3627408385;
&#3627409361;??????&#3627408384;|&#3627408385;
&#3627409361;= (0.25)(0.02) = 0.005,
and hence
??????&#3627408384;= 0.006 + 0.0135 + 0.005 = 0.0245.

Theorem 2.17: (Bayes' Rule)
If the events &#3627408489;
&#3627409359;,&#3627408489;
&#3627409360;,…,&#3627408489;
??????constitute a
partition of the sample space Ssuch that
??????&#3627408385;
??????≠&#3627409358;for??????=&#3627409359;,&#3627409360;,…,??????,then for any
event Ain Ssuch that ??????&#3627408384;≠&#3627409358;,
??????&#3627408385;
??????|&#3627408384;=
??????&#3627408385;
??????∩&#3627408384;
σ
??????=&#3627409359;
??????
??????&#3627408385;
??????∩&#3627408384;
=
??????&#3627408385;
????????????&#3627408384;|&#3627408385;
??????
σ
??????=&#3627409359;
??????
??????&#3627408385;
????????????&#3627408384;|&#3627408385;
??????
for??????=&#3627409359;,&#3627409360;,…,??????

Proof:
By the: definition of conditional
probability,
??????&#3627408385;
??????|&#3627408384;=
??????&#3627408385;
??????∩&#3627408384;
??????&#3627408384;
and then using Theorem 2.16 in the
denominator, we have
??????&#3627408385;
??????|&#3627408384;=
??????&#3627408385;
??????∩&#3627408384;
σ
??????=&#3627409359;
??????
??????&#3627408385;
??????∩&#3627408384;

Applying theorem 2.13 to both numerator and
denominator, we obtain
??????&#3627408385;
??????|&#3627408384;=
??????&#3627408385;
????????????&#3627408384;|&#3627408385;
??????
σ
??????=&#3627409359;
??????
??????&#3627408385;
????????????&#3627408384;|&#3627408385;
??????
which completes the proof.

Example:
With reference to the last example above, if a
product was chosen randomly and found to be
defective, what is the probability that it was
made by machine &#3627408385;
&#3627409361;?
Solution :Using Bayes' rule to write
??????&#3627408385;
&#3627409361;|&#3627408384;
=
??????&#3627408385;
&#3627409361;??????&#3627408384;|&#3627408385;
&#3627409361;
??????&#3627408385;
&#3627409359;??????&#3627408384;|&#3627408385;
&#3627409359;+??????&#3627408385;
&#3627409360;??????&#3627408384;|&#3627408385;
&#3627409360;+??????&#3627408385;
&#3627409361;??????&#3627408384;|&#3627408385;
&#3627409361;

and then substituting the: probabilities calculated
in last example, we have
??????&#3627408385;
&#3627409361;|&#3627408384;=
&#3627409358;.&#3627409358;&#3627409358;&#3627409363;
&#3627409358;.&#3627409358;&#3627409358;&#3627409364;+&#3627409358;.&#3627409358;&#3627409359;&#3627409361;&#3627409363;+&#3627409358;.&#3627409358;&#3627409358;&#3627409363;
=
&#3627409358;.&#3627409358;&#3627409358;&#3627409363;
&#3627409358;.&#3627409358;&#3627409360;&#3627409362;&#3627409363;
=
&#3627409359;&#3627409358;
&#3627409362;&#3627409367;
In view of the fact that a defective product was
selected, this result suggests that it probably was
not made by machine &#3627408385;
&#3627409361;.

Exercise

Exercise

Exercise

Exercise

Exercise
Tags