Lessons 1, 2, 3 in Grade 7 Mathematics.ppt

MaryRoseAlegria 214 views 22 slides Jul 10, 2024
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

Math 7


Slide Content

If all the s in a Δadd up to 180
o
. Then
what about the s in a quadrilateral and
pentagon?
3 * 180 = 540
o
How about a hexagon?
4 * 180 = 720
o
2 * 180 = 360
0

# of
sides
# of
triangles
Sum of
measures of
interior angles
3 1
1(180)=180
4 2
2(180)=360
5 3 3(180)=540
6 4 4(180)=720
n
n-2 (n-2) • 180

If a convex polygon has nsides,
then the sumof the measure of
the interior angles is
(n –2)(180°)

If a regular convex polygon
has nsides, then the measure
of oneof the interior angles isn
n180)2(

Ex. 1 Use a regular 15-gon to answer the questions.
A)Find the sum of the measures of the
interior angles.
B)Find the measure of ONE interior angle
2340°
156°

Ex: 2 Find the value of x in the polygon
130
126
143
100
117
x
126 + 130 + 117 + 143 + 100 + x = 720
616 + x = 720
x = 104

Ex: 3 The measure of each interior angle is 150°,
how many sides does the regular polygon have?

n
n 180)2(
One interior angle150
180)2(


n
n nn 150180)2(  nn 150360180  36030n 12n
A regular
dodecagon

Two more important terms
Exterior
Angles
Interior
Angles

The sumof
the measures
of the exterior
angles of a
convex
polygon, one
at each vertex,
is 180°.
1
2
3
4
5
1
3
2
1
3
2
4

Look on the
bottom of the
Worksheet
Tags