LESSONS 1-3 Gen Math. functions and relationsppt

FrencyGemTumalay1 438 views 35 slides Jul 30, 2024
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

gen math


Slide Content

Relations
and
Functions

Relation-Any set of ordered
pairs.
domain-first coordinates,
input, independent variable
range-second coordinates,
output, dependent variable
Definitions

Example
•People and their heights
•Grades in General Mathematics

Example
Names
Peter
Krisha
Fay
Abby
Earl
Clara
Job
Karl
Audrey
Grades
95
94
93
92
95
97
94
90
98

Function-a type of relation
where there is exactly one
outputfor every input. For
every xthere is exactly one y.

xy
Job
Karl
96
97
xy
Job
Karl
96
97
Not a FunctionFunction

Vertical Line Test -Functions
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
Function

Vertical Line Test -Functions
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
FunctionFunction

Vertical Line Test -Functions
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
FunctionFunction Not a
Function

Vertical Line Test -Functions
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
FunctionFunction Not a
Function
Function

Vertical Line Test -Functions
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
FunctionFunction Not a
Function
Function
Not a
Function
Function
Not a
Function
Not a
Function

Tell whether the relation below is a function.
1)
2)
3)
4)
inputoutput
0
1
5
2
3
yx
-3
-3
-3
-3
-1
0
1
2
x
y
Function
Not a
Function
Not a
Function
inputoutput
-2
-1
0
3
4
5
6
Not a
Function

Conclusion and Definition
•Not every relation is a function.
•Every function is a relation.

TYPES OF FUNCTIONS
LINEAR FUNCTION
A function f is a linear function if
f(x) = mx + b, where m and b are real
numbers, and m and f(x) are not both
equal to zero.

yx
-2
-1
0
1
2
-4
-2
0
2
4
y = 2x
inputoutput
-2
-1
-4
-2
0
1
0
2
2 4
x-y chartmapping

QUADRATIC FUNCTION
A quadratic function is any
equation of the form f(x) =
ax
2
+ bx+ c where a, b, and c
are real numbers and a ≠0.

y = x
2
+ 1
yx
-2
-1
0
1
2
5
2
1
2
5
inputoutput
-2
-1 5
20
1
1
2
x-y chartmapping

CONSTANT FUNCTION
A linear function f is a constant function if
f(x) = mx + b, where m = 0 and b is any
real number. Thus, f(x) = b.
IDENTITY FUNCTION
A linear function f is an identity function
if f(x) = mx + b, where m = 1 and b = 0.
Thus, f(x) = x.

Piecewise Function
A piecewise function or a compound
function is a function defined by
multiple sub-functions, where each sub-
function applies to a certain interval of
the main function's domain.

yx
-2
-1
0
1
2
-4
-2
0
2
4
y = 2x
inputoutput
-2
-1
-4
-2
0
1
0
2
2 4
x-y chartmapping

Many-to-one Function
if there areyvalues that have more
than onexvalue mapped onto them.
One-to-many (not a function)

xy
Job
Karl
96
97
xy
Job
Karl
96
97
Not a FunctionFunction
One-to-many Many-to-one

Lesson 2 EVALUATION OF FUNCTIONS

EVALUATING FUNCTIONS
LAW OF SUBSTITUTION
If a + x = b and x = c, then a+ c= b
Example 1
If f(x) = x + 8, evaluate each.
a.f(4)
b.f(–2)
c.f(–x)
d.f(x + 3)

Function Notationy 2x 3 f (x) 2x 3 when x 1, y 5 when x 2, y 7 when x 3, y 9 when x 4, y 11 f (1) 5 f(2) 7 f(3) 9 f(4) 11 f( 4) 5

2
g(x) x h(x) 3x 2 Evaluate the following.1) g(4) 2) h( 2) 3) g( 3) 4) h(5) 5) h(4) g(1) 6) h( 5) g( 2)    7) g h(3) 8) h g(2) 16 8 9 13 10  1 1 17  4 68 g ( 7 ) 4 9 h ( 4 ) 1 0

Lesson 3 OPERATIONS ON FUNCTIONS

Lesson Objectives
At the end of the lesson, the students must
be able to:
•find the sum of functions;
•determine the difference between
functions;
•identify the product of functions;
•find the quotient between functions; and
•determine the composite of a function.

ADDITION OF FUNCTIONS
Let f and g be any two functions.
The sum f + g is a function whose
domains are the set of all real numbers
common to the domain of f and g, and
defined as follows:
(f + g)(x) = f(x) + g(x)

SUBTRACTION OF FUNCTIONS
Let f and g be any two functions.
The differencef –g is a function whose
domains are the set of all real numbers
common to the domain of f and g, and
defined as follows:
(f –g)(x) = f(x) –g(x)

MULTIPLICATION OF FUNCTIONS
Let f and g be any two functions.
The product fgis a function whose
domains are the set of all real numbers
common to the domain of f and g, and
defined as follows:
(fg)(x) = f(x) · g(x)

DIVISION OF FUNCTIONS
Let f and g be any two functions.
The quotientf/g is a function whose domains
are the set of all real numbers common to the
domain of f and g, and defined as follows: ,
where g(x) ≠ 0.f
g
x()=
fx()
gx()

Example 1
If f (x) = 3x –2 and
g (x) = x
2
+ 2x –3,
1. find (f + g) (x)
2. Find (f –g)(x)
3. Solve (fg)(x)
4. Find the quotient of f(x) and g(x)
Tags