Linear Algebra and Matrices Powerpoint 2024

LeviHourn1 69 views 20 slides Jun 21, 2024
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Stuff about linear algebra and matrices.


Slide Content

Matrix Algebra
Methods for Dummies
FIL
January 25 2006
Jon Machtynger & Jen Marchant

Acknowledgements / Info
•Mikkel Walletin’s (Excellent) slides
•John Ashburner (GLM context)
•Slides from SPM courses:
http://www.fil.ion.ucl.ac.uk/spm/course/
•Good Web Guides
–www.sosmath.com
–http://mathworld.wolfram.com/LinearAlgebra.html
–http://ceee.rice.edu/Books/LA/contents.html
–http://archives.math.utk.edu/topics/linearAlgebra.html

Scalars, vectors and matrices
•Scalar:Variable described by a single
number –e.g. Image intensity (pixel value)
•Vector: Variable described by magnitude and direction
Square (3 x 3) Rectangular (3 x 2) d
r c: r
th
row, c
th
column
3
2
•Matrix: Rectangular array of scalars

Matrices
•A matrix is defined by the number of Rows and the
number of Columns.
•An mxnmatrix has mrowsand ncolumns.
A = 4x3matrix
•A square matrixof order n, is an nxnmatrix.
21253
53412
63355
74273
Matlab notes ( ; End of matrix row )
A = [ 21 5 53 ; 5 34 12 ; 6 33 55 ; 74 27 3 ]
To extract data: Matrix name( row, column )
Scalar Data Point A( 1 , 2 ) = 2
Row Vector A( 2 , : ) = [ 5 34 12 ]
Column Vector A( : , 3 ) = [ 53 ; 12 ; 55 ; 3 ]
Smaller Matrix A(2:4,1:2) = [ 5 34 ; 6 33 ; 74 27 ]
Another Matrix A( 2:2:4 , 2:3 ) = [ 34 12 ; 27 3 ]

Addition(matrix of same size)
–Commutative: A+B=B+A
–Associative: (A+B)+C=A+(B+C)
Subtractionconsider as the addition of a negative matrix
Matrix addition

Matrix multiplication
Matrix multiplication rule:
When Ais a mxn matrix & B is a kxlmatrix, the multiplication of
ABis only viable if n=k. The result will be an mxlmatrix.
Constant (or Scalar)
multiplication of a matrix:

Visualising multiplying
b
11 b
12
b
21 b
22
b
31 b
32
a
11a
12a
13 a
11b
11+a
12b
21+a
13b
31 a
11b
12+a
12b
22+a
13b
32
a
21a
22a
23 a
21b
11+a
22b
21+a
23b
31 a
21b
12+a
22b
22+a
23b
32
a
31a
32a
33 a
31b
11+a
32b
21+a
33b
31 a
31b
12+a
32b
22+a
33b
32
a
41a
42a
43 a
41b
11+a
42b
21+a
43b
31 a
41b
12+a
42b
22+a
43b
32
a
11a
12a
13 b
11b
12 ? ?
a
21a
22a
23X b
21b
22= ? ?
a
31a
32a
33 b
31b
32 ? ?
a
41a
42a
43 ? ?
A matrix = ( mxn)
B matrix = ( kx l)
A x B is only viable if
k = n
width of A = height of B
Result Matrix = ( mx l)
Jen’s way of
visualising the
multiplication

Transposition
column → row row → column
M
rc
= M
cr

Outer product = matrix
Inner product = scalar
Two vectors:
Example
Note: (1xn)(nx1) (1X1)
Note: (nx1)(1xn) (nXn)

Identity matrices
•Is there a matrix which plays a similar role as
the number 1 in number multiplication?
Consider the nxnmatrix:
A square nxnmatrix Ahas one
A I
n= I
nA= A
An nxmmatrix Ahas two!!
I
nA= A& A I
m= A
123 100 1+0+0 0+2+0 0+0+3
456X010=4+0+0 0+5+0 0+0+6
789 001 7+0+0 0+8+0 0+0+9
Worked example
A In= A
for a 3x3 matrix:

Inverse matrices
•Definition.A matrix Ais nonsingularor invertibleif there exists a
matrix Bsuch that: worked example:
•Notation.A common notation for the inverse of a matrix Ais A
-1
.
•If A is an invertible matrix, then (A
T
)
-1
= (A
-1
)
T
•The inverse matrix A
-1
is uniquewhen it exists.
•If A is invertible, A
-1
is also invertible A is the inverse matrix of A
-1
.
11X
2
3
-1
3
=
2+ 1
3 3
-1+ 1
3 3
=10
-12
1
3
1
3
-2+ 2
3 3
1+ 2
3 3
01

Determinants
•Determinant is a function:
–Input is nxnmatrix
–Output is a real or a complex number
called the determinant
•In MATLAB
–use the command det(A)" to compute the
determinant of a given square matrix A
•A matrix A has an inverse matrix A-1 if
and only if det(A)≠0.
+++---

Matrix Inverse -Calculations
A general matrix can be inverted using methods such as the Gauss-Jordan elimination,
Gaussian elimination or LU decomposition
i.e. Note: det(A)≠0

Some Application Areas

Some Application Areas
•Simultaneous Equations
•Simple Neural Network
•GLM

System of linear equations
Resolving simultaneous equations can be applied using Matrices:
•Multiply a row by a non-zero constant
•Interchange two rows
•Add a multiple of one row to another row


Also known as
Gaussian Elimination

Simplistic Neural Network
O = output vector
I = input vector
W = weight matrix
η= Learning rate
d = Desired output
t = time variable
Given an input, provide an output…
Weights learned in auto associative manner or given random values…
Over time, modify weight matrix to more appropriately reflect desired behaviour

a
m
b
3
b
4
b
5
b
6
b
7
b
8
b
9
+
e= b+Y X ×
Design Matrix
=

a
m
b
3
b
4
b
5
b
6
b
7
b
8
b
9
+
e= b+Y X ×
Design Matrix
=

Questions?
Tags