JoannaVictoriaSaga2
7 views
107 slides
Oct 01, 2024
Slide 1 of 107
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
About This Presentation
Presents Quizes on the Logic Topic
Size: 1.92 MB
Language: en
Added: Oct 01, 2024
Slides: 107 pages
Slide Content
Logic CSC 102 – Recitation Questions
Which of the following are propositions? The sun is blue Am I pretty? We live in Butuan. Please don’t leave me! Answer your assignments Names that starts with the letter ‘A’ are smart Tokyo is in japan ‹#›
Which of the following are propositions? The sun is blue Am I pretty? We live in Butuan. Please don’t leave me! Answer your assignments Names that starts with the letter ‘A’ are smart Tokyo is in Japan ‹#›
Propositions - A declarative sentence with a truth value of either true or false but not both ‹#›
Which of the following are compound propositions? It is Monday today and it is raining If you go then I will go too The sun is up but I can’t go If a picture paints a thousand words then why cant I paint you I will be with you always and forever I will graduate if and only if I pass all my subjects ‹#›
Which of the following are compound propositions? It is Monday today and it is raining If you go then I will go too The sun is up but I can’t go If a picture paints a thousand words then why cant I paint you I will be with you always and forever I will graduate if and only if I pass all my subjects ‹#›
Compound Propositions - Composed of sub-propositions and various connectives Primitive Propositions - A proposition that could not be broken down into simpler propositions. ‹#›
Suppose we have 3 propositions p, q, and r, how many rows does its truth table have? ‹#›
Suppose we have 3 propositions p, q, and r, how many rows does its truth table have? ‹#›
Suppose we have 3 propositions p, q, and r, how many rows does its truth table have? ‹#› Which among the following are examples of conjunctions , disjunction and negation Choose whether to live here or die there I will go there and you will come here Tomorrow I will go to the mall and have my nails clean I will not follow you Live a life that’s adventurous or live a life that’s comfortable
Suppose we have 3 propositions p, q, and r, how many rows does its truth table have? ‹#› Which among the following are examples of conjunctions , disjunction and negation Choose whether to live here or die there I will go there and you will come here Tomorrow I will go to the mall and have my nails clean I will not follow you Live a life that’s adventurous or live a life that’s comfortable Conjunctions -Propositions connected with ‘and’ Disjunction -Propositions connected with ‘or’ Negations -Propositions that negates or declares the opposite
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico Determine if the following statements are true or false. . ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
Given the following propositions p : Tokyo is in Japan q : Ottawa is in Mexico What are their equivalent verbal sentences ‹#›
‹#›
‹#›
‹#›
‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies ‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies The statement “I will marry you or I will not marry you” is always true. ‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies The statement “I will marry you or I will not marry you” is always true. True ‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies The statement “I will marry you or I will not marry you” is always true. True These are propositions P (p, q, . . .) that are always false. ‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies The statement “I will marry you or I will not marry you” is always true. True These are propositions P (p, q, . . .) that are always false. Contradiction ‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies The statement “I will marry you or I will not marry you” is always true. True These are propositions P (p, q, . . .) that are always false. Contradiction The statement “Today is raining and not raining” is always false. ‹#›
These are propositions P (p, q, . . .) that are always true. Tautologies The statement “I will marry you or I will not marry you” is always true. True These are propositions P (p, q, . . .) that are always false. Contradiction The statement “Today is raining and not raining” is always false. True ‹#›
‹#›
‹#›
‹#›
‹#›
‹#›
If two propositions has identical truth table they are said to be? ‹#›
If two propositions has identical truth table they are said to be? Logical Equivalent ‹#›
‹#›
‹#›
‹#›
‹#›
‹#›
Algebra of Proposition ‹#›
‹#›
‹#›
‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. ‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. Conditional Statement ( p → q) ‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. Conditional Statement ( p → q) Statements that are of the form ‘p if and only if q’ is called ‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. Conditional Statement ( p → q) Statements that are of the form ‘p if and only if q’ is called Biconditional statements (p ↔ q) ‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. Conditional Statement ( p → q) Statements that are of the form ‘p if and only if q’ is called Biconditional statements (p ↔ q) Complete the table ‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. Conditional Statement ( p → q) Statements that are of the form ‘p if and only if q’ is called Biconditional statements (p ↔ q) Complete the table ‹#›
Statements that are of the form ‘if p then q’, ’p implies q’, ‘ p only if q’ is called .. Conditional Statement ( p → q) Statements that are of the form ‘p if and only if q’ is called Biconditional statements (p ↔ q) Complete the table ‹#›
‹#›
‹#›
‹#›
‹#›
An ______ is an assertion that a given set of propositions P1, P2, . . . , Pn, called premises, yields (has a consequence) another proposition Q, called the ________. ‹#›
An ______ is an assertion that a given set of propositions P1, P2, . . . , Pn, called premises, yields (has a consequence) another proposition Q, called the ________. Argument, Conclusion ‹#›
‹#›
‹#›
‹#›
‹#›
‹#›
‹#›
‹#›
‹#›
Determine if the following statement is valid If Joe passes the exam and Dory supports her friends then Julie is not happy. Julie is not happy. Thus Dory supports her friend. ‹#›
Determine if the following statement is valid If Joe passes the exam and Dory supports her friends then Julie is not happy. Julie is not happy. Thus Dory supports her friend. 1 st : What are the primitive propositions involved in this statement ‹#›
Determine if the following statement is valid If Joe passes the exam and Dory supports her friends then Julie is not happy. Julie is not happy. Thus Dory supports her friend. 1 st : What are the primitive propositions involved in this statement p: Joe passes the exam -p: Joe did not pass the exam q: Dory supports her friends -q: Dory did not support her friends r: Julie is happy -r: Julie is not happy ‹#›
Determine if the following statement is valid If Joe passes the exam and Dory supports her friends then Julie is not happy. Julie is not happy. Thus Dory supports her friend. 1 st : What are the primitive propositions involved in this statement p: Joe passes the exam -p: Joe did not pass the exam q: Dory supports her friends -q: Dory did not support her friends r: Julie is happy -r: Julie is not happy 2 nd : How do we formalize the statement? ‹#›
‹#›
‹#›
‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} (b) p(x) be “x * x < x” The truth set is an empty set { } (c) p(x) be “the number of colors flags in Asia has” The truth set is {x|x are the number of colors, flags in asia has} ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} (b) p(x) be “x * x < x” ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} (b) p(x) be “x * x < x” The truth set is an empty set { } ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} (b) p(x) be “x * x < x” The truth set is an empty set { } (c) p(x) be “the number of colors flags in Asia has” ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} (b) p(x) be “x * x < x” The truth set is an empty set { } (c) p(x) be “the number of colors flags in Asia has” The truth set is {x|x are the number of colors, flags in asia has} ‹#›
Determine the truth set of the following propositional functions Where p(x) is defined on the set N. (a) p(x) be “x + 4 > 9” The truth set is {6,7,8,9, …} (b) p(x) be “x * x < x” The truth set is an empty set { } (c) p(x) be “the number of colors flags in Asia has” The truth set is {x|x are the number of colors, flags in asia has} ‹#›
What quantifier is used in this expression? (∀x ∈ A)p(x) or ∀x p(x) ‹#›
What quantifier is used in this expression? (∀x ∈ A)p(x) or ∀x p(x) Universal Quantifier ‹#›
What quantifier is used in this expression? (∀x ∈ A)p(x) or ∀x p(x) Universal Quantifier What quantifier is used in this expression? ‹#›
What quantifier is used in this expression? (∀x ∈ A)p(x) or ∀x p(x) Universal Quantifier What quantifier is used in this expression? (∃x ∈ A)p(x) or ∃x, p(x) ‹#›
What quantifier is used in this expression? (∀x ∈ A)p(x) or ∀x p(x) Universal Quantifier What quantifier is used in this expression? (∃x ∈ A)p(x) or ∃x, p(x) Existential Quantifier Determine if the following statements are true or false: ‹#›
‹#›
‹#›
NOTE: In negating quantifiers ‹#›
‹#›
‹#›
NOTE: In negating quantifiers What is the negation of the following statement 1. There exist a man who cannot marry or can dance ‹#›
NOTE: In negating quantifiers What is the negation of the following statement 1. There exist a man who cannot marry or can dance All man can marry and dance ‹#›
NOTE: In negating quantifiers What is the negation of the following statement 1. There exist a man who cannot marry or can dance All man can marry and dance 2. If all the people vote for me, then I will win the election ‹#›
NOTE: In negating quantifiers What is the negation of the following statement 1. There exist a man who cannot marry or can dance All man can marry and cannot dance 2. If all the people vote for me, then I will win the election ‹#›