lp3 FUNDAMENTOS SIMPLEX SIMPLEX simplex.ppt

RicardoHernndezGmez1 4 views 37 slides Aug 01, 2024
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

FUNDAMENTOS


Slide Content

Linear Programming Fundamentals
Convexity
Definition: Line segment joining any 2 ptslies inside shape
convex NOT convex

Linear Programming Fundamentals..
Nice Property of Convex Shapes:
Intersection of convex shapes is convex

Linear Programming Fundamentals…
Every Half-space is convex
Set of feasible solutionsis a convex polyhedron
Each constraint of an LP half space

Some definitions
y ≥0
x ≥0
x ≤500
2x+y ≤1500
x + y ≤1200
(0,0)
1000
1500
500 10001500
500
y
x
Feasible
region
Boundary Feasible Solution
Corner points

Important Properties
(0,0)
1000
1500
50010001500
500
y
x
Feasible
region
Property 1.IF: only one optimum solution => must be a corner point
(0,0)
1000
1500
500 10001500
500
y
x
Feasible
region

Important Properties..
(0,0)
1000
1500
50010001500
500
y
x
Feasible
region
Property 2.IF: multiple optimum solutions => must include 2 adjacent corner pts

Important Properties…
(0,0)
1000
1500
50010001500
500
y
x
Feasible
region
Property 4.Total number of corner pts is finite
Property 3.If a corner point is better than all its adjacent corners, it is optimal !

Important Properties....
(0,0)
1000
1500
50010001500
500
y
x
Feasible
region
Note: Corner point intersection of some constraint boundaries (lines)
Property 5.Moving from a corner point to any adjacent corner point 
Exactly one constraint boundary is exchanged.

The algebra of Simplex
Good news
We only need to search for the best feasible corner point
Good news
We can use property 5 to guide our searching
Bad news
A problem with 50 variables, 100 constraints =>
100 !
50 ! (100-50) !
=> ~ 10
29
corner points

The outline of Simplex
1.Start at a corner point feasible solution
2. If (there is a better adjacent corner feasible point) then
go to one such adjacent corner point;
repeat Step 2;
else (report this point as the optimum point).
Why does this method work ?
1. Constant improvement (=> no cycling)
2. Finite number of corners

The Algebra of Simplex: Gauss elimination
Solving for corner points solving a set of simultaneous equations
Method: Gaussian elimination
Example:
x + y = 2 [1]
x –2y = 1 [2]
Solve by:
2x[1] + [2]:3x = 5 => x = 5/3
[1] -1x[2]: 3y = 1=> y = 1/3

The Algebra of Simplex: need for Slack !
Cannot add (multiples of) INEQUATIONS !!
Consider:
x >= 0 [1]
y >= 0 [2]
[1] + [2]: x + y >= 0[3]
x
y
x + y >= 0

The Algebra of Simplex: Slack
To allow us to use Gaussian elimination,
Convert the inequalities to equations by using SLACK Variables
2x + y ≤ 1500,
x, y ≥ 0
2x + y + s = 1500,
x, y, s ≥ 0
x + y ≥ 200
x, y ≥ 0
x + y –s = 200,
x, y, s ≥ 0.
Inequality Equality, with slack variable

The Algebra of Simplex..
Conversion of the Product mix problem
ORIGINAL
Maximize
z( x, y) = 15 x + 10y
subject to
2x + y ≤ 1500
x + y ≤ 1200
x ≤ 500
x ≥ 0,
y ≥ 0
(almost) STANDARD FORM
Maximize
Z = 15 x
1+ 10x
2
subject to
2x
1+ x
2+ x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5= 500
x
i≥ 0 for all i.

ORIGINAL
Maximize
z( x, y) = 15 x + 10y
subject to
2x + y ≤ 1500
x + y ≤ 1200
x ≤ 500
x ≥ 0,
y ≥ 0
(almost) STANDARD FORM
Maximize
Z = 15 x
1+ 10x
2
subject to
2x
1+ x
2+ x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5= 500
x
i≥ 0 for all i.
Original problem: n variables, m constraints
Standard form: (m+n) variables, m constraints
The Algebra of Simplex…

Original problem: n variables, m constraints
Standard form: (m+n) variables, m constraints
How to use Gaussian elimination ??
Force some variables = 0
How many to be forced to be 0 ?
The Algebra of Simplex…

Definitions: augmented solutionx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Solution: Augmented solution
(x
1x
2) = (200, 200) (200, 200, 900, 800, 300)
Max
Z = 15 x
1+ 10x
2
S.T.
2x
1 + x
2 + x
3 = 1500
x
1 + x
2 + x
4 = 1200
x
1 + x
5 = 500
x
i≥ 0 for all i.

Definitions: BS, BFSx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Basic solutionAugmented, corner-point solution
Max
Z = 15 x
1+ 10x
2
S.T.
2x
1 + x
2 + x
3 = 1500
x
1 + x
2 + x
4 = 1200
x
1 + x
5 = 500
x
i≥ 0 for all i.
Examples
basic infeasible solution: ( 500, 700, -200, 0, 0)
basic feasible solution:(500, 0, 500, 700, 0)

Definition: non-basic variablesx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Max
Z = 15 x
1+ 10x
2
S.T.
2x
1+ x
2+ x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5= 500
x
i≥ 0 for all i.
Corner
Feasible
solution
DefiningeqnsBasicsolution non-basic
variables
(0,0) x
1
=0
x
2
=0
(0,0,1500,1200,500)x
1
,x
2
(500,0)x
1
=500
x
2
=0
(500,0,500,700,0)x
2
,x
5
(500,500)x
1
=500
2x
1
+x
2
=1500
(500,500,0,200,0)x
5
,x
3
(300,900)x
1
+x
2
=1200
2x
1
+x
2
=1500
(300,900,0,0,200)x
3
,x
4
(0,1200)x
1
=0
x
1
+x
2
=1200
(0,1200,300,0,500)x
4
,x
1

The Algebra of Simplexx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Max
Z = 15 x
1+ 10x
2
S.T.
2x
1+ x
2+ x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5= 500
x
i≥ 0 for all i. Corner
infeasible
solution
DefiningeqnsBasic
infeasible
solution
non-basic
variables
(750,0)x
2
=0
2x
1
+x
2
=1500
(750,0,0,450,-250)x
2
,x
3
(1200,0)x
2
=0
x
1
+x
2
=1200
(1200,0,-900,0,-700)x
2
,x
4
(500,700)x
1
+x
2
=1200
x
1
=500
(500,700,-200,0,0)x
4
,x
5
(0,1500)x
1
=0
2x
1
+x
2
=1500
(0,1500,0,-300,500)x
1
,x
3

The Algebra of Simplex: Standard formx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
STANDARD FORM
Max
Z
S.T.
Z -15 x
1-10 x
2 = 0
2 x
1+ x
2 + x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5 = 500
x
i≥ 0 for all i.

The Algebra of Simplex: Step 1. Initial solutionx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Max
Z
S.T.
Z -15 x
1-10 x
2 = 0
2 x
1+ x
2 + x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5 = 500
x
i≥ 0 for all i.
( 0, 0)
Initial non-basic variables: (x
1, x
2)
Initial basic variables: (x
3, x
4 , x
5)
Initial BFS: (0, 0, 1500, 1200, 500)

The Algebra of Simplex: Step 2. Iteration Stepx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Entering variable:
Z = 15 x
1+ 10x
2
Fastest rate of ascent

The Algebra of Simplex: Step 2. Iteration Step
Leaving variable
Max Z
S.T.
Z -15 x
1-10x
2 = 0
2x
1+ x
2+ x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5 = 500
x
i≥ 0 for all i.
Consider first constraint:
Entering
2x
1+ x
2+ x
3= 1500
x
3= 1500 -2x
1-x
2
Bound on x
1: 1500/2 = 750

The Algebra of Simplex: Step 2. Iteration StepBasic
variable
Equation Upper bound for x1
x3 x3 = 1500 - 2x1 - x2 x2 = 0, so x1 ≤ 1500/2; UB = 750
x4 x4 = 1200 - x1 - x2 x2 = 0, so x1 ≤ 1200; UB = 1200

x5 x5 = 500 - x1 x1 ≤ 500  minimum

Max Z
S.T.
Z -15 x
1-10x
2 = 0
2x
1+ x
2+ x
3 = 1500
x
1+ x
2 + x
4 = 1200
x
1 + x
5 = 500
x
i≥ 0 for all i.
Leaving variable

The Algebra of Simplex: Step 2. Iteration Step
Enter: x
1 Leave: x
5
Z-15 x
1-10x
2 = 0 [0-0]
2 x
1+ x
2+ x
3 = 1500[0-1]
x
1+ x
2 + x
4 = 1200[0-2]
x
1 + x
5= 500 [0-3]
ROW OPERATIONS so that
Each row has exactly one basic variable
The coefficient of each basic variable = +1
-[0-3]
-2x [0-3]
+ 15x [0-3]

The Algebra of Simplex: Step 2. Iteration Step
Z -15 x
1-10x
2 = 0 [0-0]
2 x
1+ x
2+ x
3 = 1500 [0-1]
x
1+ x
2 + x
4 = 1200 [0-2]
x
1 + x
5= 500 [0-3]
Z -10x
2 +15 x
5= 7500 [1-0]
x
2+ x
3 -2 x
5= 500 [1-1]
x
2 + x
4-x
5= 700 [1-2]
x
1 + x
5= 500 [1-3]
Row operations
Basic Feasible Solution: ( 500, 0, 500, 700, 0)

The Algebra of Simplex: Step 2. Iteration Stepx
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
Basic Feasible Solution: ( 500, 0, 500, 700, 0)
Objective value: 7500

The Algebra of Simplex: Step 3. Stopping condition
Z -10x
2 +15 x
5= 7500 [1-0]
x
2 + x
3 -2 x
5= 500 [1-1]
x
2 + x
4 -x
5= 700 [1-2]
x
1 + x
5= 500 [1-3]
Stopping Rule:Stop when objective cannot be improved.
New entering variable: x
2

The Algebra of Simplex: Second Iteration..
Z -10x
2 +15 x
5= 7500 [1-0]
x
2 + x
3 -2x
5= 500 [1-1]
x
2 + x
4-x
5 = 700 [1-2]
x
1 + x
5= 500 [1-3]
New entering variable: x
2Basic
variable
Equation Upper bound for x2
x3 x3 = 500 – x2 + 2x5 x2 ≤ 500  minimum
x4 x4 = 700 – x2 + x5 x2 ≤ 700
x1 x1 = 500 – x5 no limit on x2


Analysis for leaving variable:

The Algebra of Simplex: Step 2. Iteration Step
Enter: x
2 Leave: x
3
ROW OPERATIONS so that
Each row has exactly one basic variable
The coefficient of each basic variable = +1
-[1-1]
+ 10x [1-1]Z -10x
2 +15 x
5= 7500 [1-0]
x
2 + x
3 -2x
5= 500 [1-1]
x
2 + x
4-x
5 = 700 [1-2]
x
1 + x
5= 500 [1-3]

The Algebra of Simplex: Step 2. Iteration Step
Basic Feasible Solution:
After row operations:
Z +10 x
3 -5 x
5= 12,500 [2-0]
x
2 + x
3 -2x
5= 500 [2-1]
-x
3 + x
4+ x
5= 200 [2-2]
x
1 + x
5= 500 [2-3]x
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
( 500, 500, 0, 200, 0)
Have we found the OPTIMUM ?

The Algebra of Simplex: Third Iteration
New entering variable: x
5
Analysis for leaving variable:
Z +10 x
3 -5 x
5= 12,500 [2-0]
x
2 + x
3 -2x
5= 500 [2-1]
-x
3 + x
4+ x
5= 200 [2-2]
x
1 + x
5= 500 [2-3]
Basic
variable
Equation Upperboundforx
5
x
2
x
2
=500+2x
5
-x
3
nolimitonx
5
x
4
x
4
=200+x
3
-x
5
x
5
≤200 minimum
x
1
x
1
=500–x
5
x
5
≤500

The Algebra of Simplex: Step 2. Third iteration..
ROW OPERATIONS so that
Each row has exactly one basic variable
The coefficient of each basic variable = +1
-[2-2]
+ 5x [2-2]
Enter: x
5 Leave: x
4
Z +10 x
3 -5 x
5= 12,500[2-0]
x
2 + x
3 -2x
5= 500 [2-1]
-x
3 + x
4+ x
5= 200 [2-2]
x
1 + x
5= 500 [2-3]
+ 2x [2-2]

The Algebra of Simplex: Step 2. Iteration Step
Basic Feasible Solution:x
1
=500
2x
1
+x
2
=1500
x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1
x
1
=500x
1
=500
2x
1
+x
2
=15002x
1
+x
2
=1500
x
1
+ x
2
=1200x
1
+ x
2
=1200
(0,0)
1000
1500
500 10001500
500
x
2
x
1 ( 300, 900, 0, 0, 200)
Have we found the OPTIMUM ?
After row operations:
Z +5 x
3+ 5x
4 = 13,500 [3-0]
x
2 -x
3 + 2x
4 = 900 [3-1]
-x
3 + x
4+ x
5= 200 [3-2]
x
1 + x
3-x
4 = 300 [3-3]

The Algebra of Simplex: Some important points
1. Higher dimensions
2. Many candidates for entering variable
Each step:
ONE entering variable
ONE leaving variable
 Each constraint equation has
has same format as our example
e.g. Z = 200 + 10x
1+ x
2+ 10x
3
Just pick any one

The Algebra of Simplex: Some important points..
3. Many candidates for leaving variable
4. No candidate for leaving variable
5. Minimization problems
Degenerate case, rare.
Unbounded objective !?
Minimize Z == Maximize -Z
next topic: inventory control
Tags