LTI -LaplacesignalsandsystemEEEBEmaterial.pdf

Nityasrisumathi 3 views 29 slides Mar 11, 2025
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

Laplace transform


Slide Content

CONTINUOUS
TIME
LTI SYSTEMS
Dr.R.Helen

Laplace Tranfromation
•we saw that for a continuous-time LTI system with
impulse response h(t),the output y(t) of the system
to the complex exponential input of the form e
st
is

a +3)

144513 "(s+

X(s)=

N

Re(s) > -1

E. ku

N

Transfer function

A. The System Function:

In Sec. 2.2 we showed that the output y(t) of a continuous-time LTI system equals the
convolution of the input x(t) with the impulse response A(t); that is,

y(t) =x(1)* A(t) (3.35)
Applying the convolution property (3.23), we obtain
Y(s) = X(s)H(s) (3.36)

where Y(s), X(s), and H(s) are the Laplace transforms of y(t), x(t), and A(t), respec-
tively. Equation (3.36) can be expressed as

고 (3.37)

50) (の =xO # hit)

Xs) Vis)=X(s)H(s)
Hs)

Fig. 3-7 Impulse response and system function.

Transfrom circuits

1. Signal Sources:
u(t) V(s) (1) —1I(s)
where v(t) and ¿(1) are the voltage and current source signals, respectively.
2. Resistance R:
v(t) = Ri(t) <> V(s) = RI(s)

3. Inductance L:
di(s)
u) = LE Vs) =sLI(s) — Li”) (3.50)
The second model of the inductance L in Fig. 3-10 is obtained by rewriting Eq. (3.50) as
‘i 1 1 ロー
ie) >15) = VS) + 2007) (3.51)
4. Capacitance C:
| の (のり
ir) = CS Hs) =sCV(s) - Co(0”) (3.52)

The second model of the capacitance C in Fig. 3-10 is obtained by rewriting Eq. (3.52) as

1 1
VL) = HS) + 0") (3.53)

eu + e*u( 一 7)

SS
E

Find inverse LT

X(t)=?
X(t)=?

Find Inverse LT


C1=1,c2=1

C1=1,c2=(-1/2)(1+j), C3= =(-1/2)(1-
j)

The output y(t) of a continuous-time LTI system is found to be 2e~“u(t) when the
input x(t) is u(t),

(a) Find the impulse response A(t) of the system.

(b) Find the output y(#) when the input x(1) is e 'u(t).
ADS ulby
gb se à eZ (も)

Take LT
Del(t) LT =1
(925 Ys Reldro 1 leo
2
Nod: 43 Pes 7-2
mod: 7 の = as
X(S Srs
> 2Stb—b
S+3
= 2.0S#D -6

S43
Tags