MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka Solution Manual

59,045 views 126 slides Dec 06, 2018
Slide 1
Slide 1 of 126
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126

About This Presentation

MACHINES AND MECHANISMS
APPLIED KINEMATIC ANALYSIS
Fourth Edition
David H. Myszka
Solution Manual


Slide Content

r’s Solutions Manual
10 accompany

and Mechanism

PEARSON

Prentic
i

This work is protected by United States copyright laws and is provided

solely for the use of instructors in teaching their courses and assessing
student learning, Dissemination or sale of any part of this work (includ-
ing on the World Wide Web) will destroy the integrity of the work and

is not permitted. The work and materials from it should never be
made available to students except by instructors using the accom-
panying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical pur-
poses and the needs of other instructors who rely on these materials.

PEARSON
Prentice
Hall

Solution Manual to Accompany:

Machines and Mechanisms

Applied Kinematic Analysis

4" Edition

David H. Myszka, Ph.D. P.E.

University of Dayton
300 College Park
Dayton OH, 45469
[email protected]

CHARTER À

nd
ne

Fey

a (ower haie fed)

ned 24, Fa

MST on, et, al
ES :
upper rare ed) ie Gog tnt me Sp)
UT se ET uso nz
2 Gt ei)

Su

A,

arb, yet, Fel

te cargo bor
¿ ca
Mere over, e |
Carrer Crvele frame, Sued)
AS] pce vom O AAN

dre
eyinder

|

ae
ihe

Le

DE

1-29 | Lmes-a dons 24

CERTES

OF: 20h yw

2b Ls <4 JomiseH
a y
L'ETAT à
121] Links dome 4
" an
por 304-1) U Ly
1-28 | Links = awe
Links =4 Lois Und
DE > 34-204 +17,
BE] Luca ents +
LS pend

Wore Blade yy

AL | Links =4 rats = À RT rte = a
EN N ES de tre ET)
DF BAND ly WF IN 20e
1S E] ET Oates o |
a“ Gens) x ES
ME > ey be 2d 21
1-35] Links = 5 dons = 5 db Links > A oats
Co em Teens, Van

due Bd -219= 27

wr AD -2-y

VST) E

pms, 2 shaia)

de=3(10 2(9=24

hE land

Dors ah ade y

EA] et re

(spss, Lau
DOF UN whey

EU

Uns E

outs 7
AS

WE 3-02 Vp

A

Links = {0 Spine 8

A

rise Eos 7

(0 pos, 3 shading)

wre 30d 240 > Y

(lepine, Verd)!

Dor: LAA Y

dor + MAA 282 :

As Jon 12 TECH] tanks! Joel =1
Links 10, al Fa Lanks=4 us
Bor = 310) - 203 = y DoF 36D 20027
EST Let dot ET Loue ER
Links lay 5 darse
Dore BUN 20 yy Dore HUN ade y
[ATT Unks=8 20 [EB] LB Some To |
Aigher rt ey eres DoE ALBAN ZONE 1 |
BOF S@H-20-1 = Y . |
EN vil se 50 anks= os = 7
A Links rt DU 2 Mates ne bad)

ME 3-2)

Arge rocher

LS) s:15 19, p=,94 [ies2]s:4) 1212, p=12,9:5
S= 518. b-side
SAL dor Aigues
5.518 (je Wwe 11 Ged
=> crane rocker spcrank- rocker
153) 9231212, pe 8; qed MATS 3) =, pe 12, 425)
ss side. » Seside |
Berm 2 B+4 13+12< 1245
is S12 (nd 15417 ed

> crank rocker

a Answers to the Chapter { Case Study Questions:

Case 11.

As link A rotates clockwise, 90, ide will move tothe lef

As link A rotates clockwise, 90%, the ball rapped in slide C wl drop down the lower, left
chute.

As link A continues ancther 90 clockwise link A wil be oriented st
will return tothe original poston shown inthe figure.

This device allons one feeder bowl to distribute balls to two separate tations.

‘The chamfers on slide C allow reli as a ball drops into the empty so as side C moves
under chute D.

This device would be useful in that only one Feder bowl will cad to be filled and
monitored.

Case12,
As handle A is rotated counterclockwise, flapper C rotates clockwise

‘As flapper € is raised, he water in thank is allowed to flow through the opening.
‘A buoyancy force will offset the water pressure, keeping the fapper in the upper poston
‘As the water leve lowers 1 the level ofthe Mepper, the Dapper vil lower wit the water
lie,

Item D floats on top ofthe water. As the water level lowers, float D also lowers.

As item D rotates counterclockwise, item F is also rotates counterclockwise.

Item Fis valve that controls water flow, nthe upper position, it file the tank. nthe
lower position, water flow seu off

‘These mechanisms allow a rapid flow of water frm the tank, slowly refill the tank, then
shutof? the water low.

“The water pressure in reidemial areas docs produce the required flow rate for a water
closet.

Case 13.

Inthe shown configuration, the wate level in bucket Bs rising, a the flow into the
bucket exceeds the amount that Is leaking fom the holes atthe boom ofthe bucket.

Inthe shown configuration, the water level in bucket Bs lowering, asthe water is leaking
Srom the oles atthe bottom ofthe bucket

If bucket B were forced upward, rocker arm C would rate clockwise

bucket B, were forced upward, ocker arm R would rotate counterclockwise.

Rocker arm R controls a diretional valve, channeling th water flow o either the upper
pipe or the lower pipe.

‘AS water drains fom one bucket, making it lighter, and fills the che, making it heavier,
the weight shift cases the rocker C to rotate and reverse the direction of the water flow.
‘The process repeats self and rotates rocker C back to the orignal position The continual
‘motion is escilation of rocker C.

‘As rocker C rotates, chanel $ moves between let and right postions, This allows the
ste! rod, which is constantly moving, 10 be ele ont a rel placed on the ef side or a
reel on placed om the right side

Since water is abundant and a common coling medium in most foundries, water flow can
be used to déve some machinery.

Answers to the Chapter 2 Case Study Questions:

Case 2-1.

L

‘As handle A is rotated, moving threaded rod B to the left, grp C also moves to the
Jet and slightly upward, Notice that inks E and F are pivoting in the middle, thus
‘pC is constrained to a swinging motion.

‘As handle A is rotated, moving threaded rod B to the lef, grip D moves tothe
Fight and slightly downward. Since links E and F are pivoting in the middle, grip D
il have motion opposing grip C

‘The purpose ofthis mechanism sto serve as a machining clamp for the workpiece.
‘The spring, G, pulling on link D would cause isto return to an upward and
rightward positon.

‘The purpose of spring G is, ultimately, o keep a positive contact between the
threaded rod and ink C.

Links E and F have a peculiar configuration to avoid interference with the
workpiece, throughout the range of motion ofthe clamp.

Such a device could be called a machining clamp.

Since link Cis moving in a swinging motion, the rounded end on the threaded rod,
‘assures a consistent point contact wit ink €.

Qupea |

an > o
ass da + 8 287 FE NES = 113 my
+
ES ui Eo x= an [EA] 8: 160-019: 307
CSD = E> Re ny
à tod: Go 8-97 AT, ae
RE ag eae rag
Do: 12ND > WH 25: UT Peels, 7
We pe BA ÿ
© tone 37 6 ;
ROE > 44 ay
ET

tam 35°F Hb X= y

MA ps: 4h ef

S+ 10 hypdanıse = 20:
dir 392 ¿> x= NS ag

cos 38" + Yao D Y= o

U ine 48x 337,
" 7

30°

A low ot cosines
80

4 CSN pS

2

_ s= VS my

ET wa Eur e

1.40 op al my“ Yn

LA ES
ES -8% 8
= A s A
eles IE ‘Ne ETES
anf "Hoh 22207 AN EE

El KR op Zah NY

Te

Em LA, some |
EN Rz De
'

sn" = Y,
u eye Wi

<i} Ze Pay

ton O= os 8 3812 -

TOS

cop EGY Ela,

Ya30 430, Cr RSA SC

p
E

©

ae nass
CRETE

I CS = 3BAin
WOE NOY
a TOR
af 2 sar
rire Ve 40 aviso)

= bb SC: 322,

3-20

reasons? 718 Algae

R004 CNY

Fa ai
B A
3 a
A
R- 43352869" R=20.13 37
[3723
A
R
R-22120 547
R
o PS

FT
Re [OF Sens = 24 jt
Best (BR st): 18.079

R218 Lis.o1

>)

aaa]

1

À

PK
Re [aS I BADGE = 4335

Ba sir es] = 41.9
rhs: Bua Érugras

Rió
À ,

3

130

ns snl
245°

D

we Gus

Ran 37

ER 12.5 co04S su #15 corto
=-040
RS SAS + 1559010 155940 > 9.84

Rl Mosa as
mi 4

Ry AD -LO costo — Frage unse

RJ Eso. sus"

E ET eya

= 020
Ry = Me 4056 10= SL, |
Re as. Su

110.14 We
Bran Win og: LIT | 1
Re No. GTA
B-3 A

K=BPA

B
K= 8.074 ¿es 2uo

T:5587 Age

3-35

K & A
-B>
Measuring :

K=5581 RAG

336
J=A>Y

measuring

EAS ej

EEN
8 A

Measuring?
KA 65"

338) 5 EA

= 8.04

6 fat |.
E Bee > st

130-119 = 68,100

Te 800 T7

3398 x. [asas
= 8.04

9: coo (aot “eit a)

um”
BEYD- = 68.26

K=8.014 Bu

3-30 1ap-(45#39)= 105

RER OE
Eo) at
= 387 As

O

5-82 ne

K:5581 Ty

RENTE
Sal see
4
EAT
+8 > 5,581

A Core
Faser"
FA
ese (sn)

Peio- (ruse

TAN

DETAU

2


EGO

710+20=90
PR IST
150, =212.03
de Bes Gon
150

ge ms (91d eS"
Ranas UN

[44] 7-C+A=>B
A
B
J
Me i
Cou {As

| ST Boke

A

ce K

| Mason: 204.084 LON,

3-46] 32(+A>B+D

A
Meagyrin

T= 109 Atle AN

GA Ke Be DrA>C

asimag:
Kd. 924 SET

D B

Measur

de NE 5-C+*A+B+D>E

C

A

ay 19 18.287

SAV] EBS De AS CHE

Measuring *
Kz 107.869 (ade

38] RADAR Coe
AmB CHE

IS] A> cHe=DeR

AvE=Becad

[3-52] 1=C+A>B

NE ON (Ste) (Sc)
NE Con sd (iS sin)

goa ER
FE 260
Betas! (Sis ps 11:40
Ts 2.10 AS

33] K=B>A=>C

8
Ge (SSD) (1258049) CTSsinbd)
= Sle

ik Ky

Hero) (12 Scost)- (iSeastd)
A

a, ES
ù = 26.0

3-S4|T=CeASBSD

Tx SONS SAS ceed)

Cap coed) = -100,

I (won de D- {essia sd)
AD sn 10) = 44.8

ERP sms: y

ty

Ky = assiad)- (405,10) + (O)

A | Ban
Ke2bto navy Tea ZU
3-55] k= BOD PASC 3-50] 35 Co AB DIE

>

= (ids = 44.22
TESTA
Beta i(as So: NN

" Keaggı NET

Keen Sd «0s 30)

- (209090) + - 4045

[Sy = 0 + (Ad - Cube} (SosH30)
~ (20050) = DiR

DI TRAM

MY =101.08

Bota (ASYasS) = 18.3

J= 10.48 TRY

[5S1]x=8-D>A>C> E
= (Lost) (50002) C3
+ (205m90)> 91.54

Ky = (-boenst) (-30 sind) d)-0}
+ (200050) = AR)

o Kx LEE
Ky

107.2k,
8: Tem Us!
K 101.86 NE

3-50] APBrC-D»E

Measuring?
C= 14.01 607
ENR

ESSAIS EEE

AE CD SET
Faut
AB» B Fee,

Meagurins,

Bess a

AW 457

BUT arme C= bee
assume direckions 17 E>

O+ (cost) Ceosbd * es 30+
ver:

10+ (20siatS)s Cain bD= 15530 + 0

Co 42
Sdbshiuhna > E=11.5
um 797 + E

3-L2Ja-+ Bol p= ESE

assune directions DS, FA

Fez c si (1) «Des 19)

= CiScostn) —LEcos38
eo nes a) oor) ©

rene or) DS (NO)
= (sm CF an 0)

D Rae AD) US ©
using DIO anses
E-=23,89, de -3B.1L

Fama DL

BAS RCD: > EF
Assume dans BR, C7
Deos3)- (-Beos49)-(Cuos 43) +0
-45 cos 60) + (3084 30)
a O)
3 | Cooan8)-(Bont-(esnid) (43)
4 = -(4Ssin' 0D) +(2Dcos30)
BeCT.y-Comas venus O
Solving Ot Osimvitancovshy
Bra. ¿217
Beka aA C107 7

c ‚Answers to the Chapter 3 Case Study Questions:

Case3-

1, AS keys pressed, ockr plate A rotates back, o elckwise inthe e end-view.

2. Spring C proves ressaace 1 rotating the rocker pate, counterclockwise he LR end view.

5. Spring B provides resistance opresing the Kes, Land.

4 Ask 2 pressed, rocker plate A aes ack, and releases key 1 the Spring unde key 1
forces ey Vino an upward positon,

3. The purpose ofthis mechanism so hamper two Keys fom being inthe dowmwar position at the

6. Spring, acting on key Lin compression and forcing baton I upward,

7. Spring Csi tension, cg acer plate A 1 rote counterclockwise the ight end view
Stop prevents any further ration tan the postion show.

SA és tape player se similar mecanico) mean to preven the play, rewind or fs forward
buttons to be pressed at the same tne

9. As mentioned, pa Dseres sip fur rocker pat A. prvents Furl cockwis raton as
Seen Som the right nd view.

Case 3.2.
1. AS deivesha A tros, coll B als turns because ofa keyed coaneton.
2. The motion ofthe shaft and collar is transe 1 gear € because the proton Oak Dis
Seated nt the neh in al
ink D were freed upward ihe protrusion would come ot ofthe th colar Nothing
‘woud be Ie diving gear C, 6 I would step rotating.
Tink D would dislodge om the notch If gear C woud be exposed to significant rss to

€ The tendency o ik Dto ve upward motion mos oreome e spring sion.

This device intended oop the oto he ger, sigan rame encountered
Sicha dec bals sip euch,
‘Tis evce woud sop the wining mechanism wire Became je, us sopping
resisance on ear
Toro this dev, ik D mus be place under ik and ligne wih he noch in colar.
10. The spring mus Bein tension, Three, it pol ink F tthe wight and Ik Et ie ie

Case 33.

AS handle Ais rated, moving threaded rod B othe le, rip C also movesto the lef and
slighty upward, Notice that inks E and Far pvoig othe mide thus rip Cis constsined
{oa swinging mation

2. Ashandie A is route, moving threaded od Bi het, grip D moves othe right and slightly
‘downward Since inks E and F are pivoting in the mide grip D wil have mation oposing.
wine.

3. The purpose ofthis mechasim isto serve a machining clamp forthe wrkpiece

4, The preg G pling 0 ink D would ame to eur to an upward and rightward pesto,

Forma ls Gaia ep a pa ona wee he threaded oan

6, Links and F havea peculiar configuration 1 voi interference with he wrikpiee,
hroupkou ih ange af maton of the clamp.

7. Seca device could be call a machining lamp

& Since ink Cs moving la swinging mio, he rounded ed cn th headed rod, asus à
sise pole contac wit Ink C

u


HAT +=.1s

Tesco] =2 101

te LS
RNA CD EMETS
Axe (4.208)-(2.12)>-3.3812 3.

M2 423.2

of) = 1,02%

teils
23 cof SOLA DAO] = 26 in
Dx UNA = + 2.189 22.1

ay Tas:
te AR 6.060 137]
SEEN

TEE RR = LL HI mn —

7

measuring =

Meta À

Mantes 230", cows

| pomos
FT

9

fa)

AA
Aena = 3.038 “ETS

4-10)

Algen: «852"4
ass 2.00 SSH

us
et E

AZ,

AB ie 22.8, cu hr

(435

4-14

easing
SS

rel
Cay

Aena 10.254"
AU?

4-16! sl
Din,

Hos Dt
1435)

9

‘iB

ABronile = AM cow

ad

AR

[4-20]

Ha

Ale 25-132: 83.48"
ASE) = 400 7m?
SADA Tee lo
Deed 52032907 TRAY

lon


AL cctuste® 533 -32644 =206,007]
Rod? 82.4 437,50

ABpaña = 14,56, Cow ABieg = 2892", evs
Ae] + 1855"" 68.007 Bauer = 259-10 ZUSSH
2 EE
IT

ARE «TENA

Eva]

Mor AN" À

Ale 22,3507-20.184
= | Sbbl

longer

a]

us
a

Mos Remap atts

= 2.2514 sherk

4-32

iB

4
Ze, ig TU BIN

os RB
= ATT (ma)

434

Alim” 626, 0

1.4000
A 856

AB BAU, cow

4-31

Miu: 2038; ow

at U sn 150°

Vs (6120-15: 10°
Les AT GL

ODA
= sn
Ciena D

RE EVA

N
EX Age, Ru
Bew “Cig: 10

10- (8-70
AR LA VIS

UE NEO
’ =9571"

Orsi ind) +70
a WE, 3

1-30] carat inte
ey BS sind) =F
age enden
Ro Re EURER
ES = [UH me
Bond) na

Em (oda

2 NA AS

Ares ASA IMAN 66.8 Lmm Y

ET

T eurer coberta:
SEN =]

R = Mar

pe
ARAM Big =

70"

Ro ISgesprdes WA |

Ep a a oie Es]
Ra

= 5545
R ACT I 4 sn 50
dspou eng: aD
y Opos]

|
=65.0

Rez bsial5~4si020
3.438"
Sr

ES

bee FAR.

4-3) D Comet epafigueadnen
A, Bes gt NS
Re ten 15
= 4.29"

dasplawd 5 Sin

ae

am = aar

Re

3.24 bú
Ae SU - Bat = 5.3231 4

Rz 1Seos Da Bsin 1D]

& Es se

Sen By Rs 3]

L

=


Horse conFiguraiton?

Tas TANS
Azar msn gar
cos! AST Mo
pros | Nall pe

drug cria

[4-83] orginal confgrañon:

tere = 4
NOR Pe pe
Be PARE 30 el

do se

ES
fu os ats) | 4253
rsplased wa urahen: \

e Delia; e 5

és Les am
aa

cos! 103.17

bo fe re SEAN

SEE
a
4

TE ,
e

serine LT
pron ey. 200 sin 30] 59 06

EA cos [eat 435" E]: 9349°
AB te (ó-, à

= (389-40) -(253-57d "52.07,

ALT onagra configurer
Chr

C8
Bei 7 ul

SE

QA e
» % 3, 8 tas ES
Bons Ra

BD: AAT TENS ~44TIem
E SRE u

pe ws) o "| = 17.88"

637 ND ann nee 542
displaced, Contugoralin :

ar AT FE: 9. Be
ge sat Lt ssl = AE
Pos PR: a

[os 135~Low2b¥ SLA) = 1.40

Bb», FF TARO
a se [sms + 19.51

Al ur Ro
CRE» mer

re SD 8.88 = bey

Br =

Bt a ETRE
Ca) ur

= sfr. a
= ee | + 42.327

Oy GRAN tas 20.807

==

Ady= MA0+5,92 >16.82 Cw)

A0y= bb.14 -39:832 26318 cow

Renga tance HAT ont enter:
A 0
we a ot be
on on PRO am
displaced tenfigorahion
:
ze Y o,
a = Ae

eee BES

AL+205- RATE L8.0Ímm
Ve E (ICO = 33,404 men?

= ABS €

50) oras entra:

¡VS de [ET eng”
A Yer 2247

Aspa) fan

wr 7 yee SIS al] E
ü Sa Y ET 2

Aye ste A dl

wea HSS

ET

DV Naher: zu
ADE > 24 - 20-184 > 3,581"

1:52] orga. Confaoretton ? K-53 Dog cfa
E Pro [sera à OS

T Re ttes ie JR

Ay = os EN Aca i= we

pl I cepto

ebb | i. 3.8"
AA Beast 1 28% I

M Mosids AR sindye und $558 os ati aye wu

> |e grasa » 20.45"
ne teen Kae (A
&

displaced Sorhyyad isn >
el lad NR Mea
e ta a0 | A= sont gg) 49.32

(RE
EE) a

+ 288i (Br fs SA

cosdOrd gsnByr 28s (1-9) 472.
RO à Aus = 24 (8-H)=4] 47

[Matas
By x tows QE 8452 ERICH
G AR, 30. Imm Beso [Penta aaa: AU
& 6.5324 STA

q) = 25132]

Bem papa -9d)= 27.306"
are Tu: A ra = 65}

LESA) organ ondas: Ads (2300320 = 344.08 Be tan" (AM 35:11
os Res C0 Sm) 2343.08

ar E > E au

EACH
30+%30- 250 si (D,-$+8) = 21913
ROW - 250.00 (9-10 = 25.84

, Al

tan (3524/2599 = 21.68"

10 EU
> 2: <<): FRS

a (santa E
N > bar
230 +2390 -250 sin CAN an
20-180 -2% ens (Br +04) = VA
Me 20232 Bu FRS 30.02"
St A, (181+30.0))- (7340421. #553) cu)

he 2! RS
Bus pu DES

I

(9)

4-55 | orignal conf! >
Seal tenfrayestion Gh AN 293.85"

Za as AAN] =

S en ] aa

IF Beer 2180 Bag = MiS"
ar

Bmr= ee FA

Bts Opos 4551
Oger = 180-B rey = 115.288"

A Fæ, >

SSE Ogee = Bier * Bag = 095°

N TER ES
Byegs ws pC st aay ea |: i CT EL Ore’ = 24.64

ee 29.19-39.00=-9.91> Gr cw/
ES An

el

(Cond, SIDI,

15123

\ Gus

| fra
& OL

(Paso 243)* Anm
rai cd vel: AIS SE q

Qe > [5,25 5% = 3.2"

Rad UTA-30M= su

Answers to the Chapter 4 Case Study Questions

Case 4-1.

1 As wheel Cis rotated clockwise, the motion of pin Dis circular, clocks, motion abou the center of
the whee

2. As wher Cis rotated cocos, the motion of pis Ps oscillating, slong an ar, centered about the
Joint onthe tapped sing ik

3. As cl Cs rated clockwise, be malen of pie K is osclating tension since item Us
ensraned to siding en ie fame

4, Turing he hand wheel wl eher as or lower the ped sido. As the lapped slides alse, fr

Je Ihe pl ofp wi be at Hier ee. The pal of ia K ll be pulled tthe le Pin.

(€)

and wil lo tend salt through siii gene placement

5. Tuning the hand-wel will move the osilating motion of slid U, ihr leward or rghiwar. The
range of motion wl az lr, gai.

6, This device ca De ud u rnning ajusment to machines thal require an oil
moon, such asa surface rider.

ing hing

ay modo ofthe Bow, coupled wih ton, brings the srew blanks tothe ges.

2. The lat havea head, which cn be ecient rented wth a parallel Rage. As he banks.
approach the fingers the Blanks that happen 10 randomly be aligned with the fingers wil end o ride
spite rack.

3. The rack intermitentes to aed poston, hen Rack down to he Bow

4. A comeing arm E, couples the motion of ik Di ak 8

5. Te mein fink D 1 rece wo pue ansia, and lak B sconstined to pure rotation

‘Therefore, a connecting ak, or a ltd jot, rquie io join the two components.

stack Bis in an elevated prison, the screw blanks are abl lie down towards C.

The tip ofthe fingers contacting the bow isthe less position. A tp os F would serve a an

fée method to preven the Mager ps o dap onthe ota ofthe bow

8. Asscrew blanks are congested inthe outlet wack, and Angers B, item F contacts the heeds ofthe
screw blanks. This cont probibis the al lowering ofthe Ginger.

9. Asscrew blanks av congested inthe ot wack, and agers By em E contacts the heads of the
Screw bans. Ths contac prob the finger B kom dipping int the bow. Therfre no other
Banks attempt eter he Gages

10. This device ia eer track, hat awonaticlly stos feeding srew blanks when the out ack Is
jammed.

11, Tis device must be even by a mechanis ha can compensat or a shorter displacement required
when the ack Is cese, À sideral mechanism, coupled wit a spring is ne opt.

Case 43.

12. BarB and ab, i rested to roma asian

3. Te op OF € can ony move borzotlly andthe boto can any move vertical. Sos cylinder
Lis shortened, the op ai C moves owar height, andthe Dtm of ink € moves downward
There, ak C moves tothe ight and roues clockwise.

3. Poin K moves othe righ, and douar,

4 Since the top of ink C is contained fom moving vera, andthe botom i constrained om
‘moving horizontal, the boto must be able to move vertically ¡any motion is o ocur Therefore,
plat mus ein lt,

3. ‘The purpose ofthis mechanism iso move table A KR and right. The motion ofthe cylinder is
amplified and the bot kage asias o suppor a load placed on tbl A.

6 Turning he headed ros end moves the "zone of ion of table A, pushing ler ear orto
ep.

|
a Qro pan [$21 .. By
© AED = | ee)
ws er DS =3i.beyod EN NEE = 109 rpm,
BAT. 180 rpm = 3 ee? 338
= RO 1322 E
= NS MARE = 882 rpm! A q
wee My
5-5] 2 15cpn = 1258 > 85%, [St lee s00rm sans ete
Qe Hoe = 1.517 =
ran, 09, ELA BPs OT see,
te ge by tags Discs


(0)

SU a

O tye
A
pacto IM e

very RS = us

AU) =

EE GS 21147

7 MATES es: Nes rem

dis = BSH
A = 49.0%,

Speaks “ts Yo

|

ES

Qe EME
a SEE 242.8]

So 21€
pe = Tees 208
Teen (BE) = 102. 2rp)

e
Conueyor ? Conveyor
ak © 2 (OS eons Ups WANN 333%
ve Fe A Gas e d Ce 536 4%
Same ere um Po bay aux
m ek SW ES
> Su a. i EE m
ee 168) = 26.1" =440/(nS+ 8337
o ARS ch
a - cry 115 Yad) 1
+
a | lm) 3
= |,
& 2 wk | q

5

MT da Gare, sider Gad)

hei inf:
ay, AA ly esi

5-12

Qu

me, Slider= eran)

mm

te $= 4
ls 2 08€ 1 SGD nn

any ty wi work
Ñ

las ¡EL (BSE) > Soreny coe de = 150 can
SR] Qu) Gnine, teca) [SAT @125 ops ner

CES]

SUD +22.)

ke ge = ,45 mm,
sn la D ook D le

dor des (BEN = or)

| |

[Ss] q=1:5120 010025 29,10

a One pestle desa

~ KS NE
ASEA —

1K - a. —J
np BOLE
kin

TE Y 221.240
— ATI ST eng

Sa |
x

Ahr asa, sua

Stan)
3 Sn

ons
I

Sr, 2

Sr oo welt yA
S11] Q21-20 >p= E DE e
EE ee TE
Mas, .
Ne ln Wer SSS]
16.36% 7 ;
gs)
© AS hes / | y à
537 A-0700 = Br)
SIERENE das TR Dae. 881-7288 =D 1, 2,3027 à
PELAS ating Y LA UARSTA = LO
Em Cale, crank-roke) [5-20] Q=1 (mete, erank~ rocken,
Gre possible deman ose la* 400 one ne use bys.
— ou.

= 1
| L em À 7h

Nel
veg v4 7

o | au ns à
La dugu he 2 132 1.73) LR Me Sotelo
“ext (BB) So crm A eam a np

O

HET 80 fis
5-01 Q=145 > g=180| ue

‘one gossible design?

Be Wyrm

9.1881-5.8144 =
Quer

> 137 145060/
dos Sas Es- BA cp

nes EE) qua RIRES
1} Ona possible design:
AT ue errors)

lstabbag | ZÍ lOs de 238034
SITE ALT?

See (12-333 com

SA Ge > Arno

Ore porte des
ue 80nd

S20 apo TD are
One possible design:

f
ay

DET or 123,223 inf
EIKE 13209515 /

En eS

ed.
CINE

RAND» 1A
1523 Lys WS

ORGIES = 200 9%

One design

lan ee [28] 010694: “Bar dr

OH Lo 025.99
MS VIS Le 3.0063, nou
La=0.2107- Et ASQ,

Or: GENES tem Des lena orem

EN a9
al Frans » PEO erase pase (BS) une
One designs un
ne design: Li sa
w
ute

5 (BRE 100 ce

SN Brom. pp

Dade

(\ rev) ser.)
ete = 428609

4

/
\/
CES

"373.75, 89.70)
| pe

BEL qu pas

N

a

Answers to the Chapter 5 Case Study Questions:

Case 51.

1. As shaft A rotates 90”, clockwise, the eccentric of lobe B moves down to the 6
clock position.

2. Asa A rates 90°, clockwise, link C will move into a vertical posto

3. A slo is necessary at point E to accommodate for he vertical mation of ink C

4. As shall A rotates 90%, cloccvse, in H will move toward the le, and drop
douar

5. As shaft A rotates 90", lokos, pin will move toward the le.

‚6. The mechanism has 6 links, $ pin joints, 2 sliding joints, and one degree of
freedom.

7. Asthread G pulls roller E downward, the distance from the driveshaft o the
«tte pivot wil lengthen. As a esl he ange at which nk C wl oncles
reduced.

8. As thread G pulls roller E downward the sance from the dive shaft tothe
‘effective pivot will lengthen. As rs, the horizontal distance at which point H
‘will ose i reduced

9. The purpose ofthe mechanism isto move lock! back and forth. However, the
speed of rave i faster in one direction, yelling quick retum ation,

Case 5-2.

1. Asrod A moves to the right, sliding block B is also driven to the right.

. As rod A moves to the right, and the roller C reaches groove D, the roller falls into
the groove. Asa result, the belleank ink rotates clockwise, The sliding block B
‘Will sill move to the right, but at a slower speed.

3. Asrod A reverses and moves to the le, the bellerank link rotates
counterclockwise, pulling roller C from groove D. The sliding block B also moves.
to the lef, but ata relatively slow speed.

4. Asrod A oscillates horizontally, siding block B also oscilates horizontally.
However a the right extreme end of the stroke, sliding block B moves ata slower

speed.

5. The purpose ofthe mechanism isto take a singl-speed linear motion and create
two-speed linear motion.

6. Rod À can be driven with a sidercrank mechanism, a pneumatic or hydraulic
cylinder, a cam follower, ec.

7. The adjustment slots at E allow the user to modify the location where the speed of
sliding block B will change.

|

[orl Jy. AR.

RB nai

|
12] 11-28

LD)

LE. sm.
ES

- 3154

E

ES,

min

fn). y A

Ryan

(6-5 woe? 210 2135 Pao

Et]

4

=
C

BR: (gad. 2.30%)

2.24% NA

Tr:
Irev-

N. vor
ie ef

eof

WA aR- Svat
® EEE)

LD 2225 ro jee oir
E ===,

EINE :
“ar Suar 22

Es 24454

Sto 3: ASE
A aa
pee rant KS EA

2204448 10 ei: a

éd

Car Svat
OO RR)

|
Bel: OS ECE
Vet safe
Sept REN, Ge
v2 a

"er
Sag 3: 44.655
vato CR
313 Gi
bbb £47.33k tk:
ELN au

ce

E

7

| |

eu [al coo cman) rer se
Cae ce (yt res ( Gene ÉS
yt =23B cpr cewy| > 125.40 min
[6-13] 27300): el “oh Re) M de “pe A0

D as BF QUISE 55"
=35t89+90 -180=2.5%

320%)
mt 2, E72
Mr (8 lisa A: 865.50 % 25% 7

IN
a)
Oo
=$30.6spae

|

fe)

A

GAL Es) =
We) Rn

€ ——

NEN Ve

Me

Vex 16 S85 >>

ol): 126.8988, cou
PACE) 31102 Sv

e a
Ve

Veste

= 1500) SR
LOS)» 102.13 E

SN À

B
w la omas

G22) ©: m: 4. SS |
Var (US) CT ER

©
Ve Ven a
>”

Ver Se

16:23] we 00) = (OATS ow
Va? Goss) = 795% DA
ME Vo Ve
8
Ve

ye W

Vers

[6-24] 0,2 IE): 8.38% cow
Vs (8.28.73) = 6,2312 V3o
Me Ve Von

| |
[625 [0,4079 DH Eu
Ves 2B RTE

26.283)
= SL
158 Sut

SE
oe SP
ATL cus

LA
EN

6228 40,2 15: (5): 7.854 cu
Vo 80 (1890) = 628.3200

Me
DS
SE oe
USNS sages days 1/720

due 8U1.11/120 = 113245, Cows i:
ay 5 ; GE

rm aurtl, eo ne rpm ADS IR
Ver 2 (523012108 % Sony Vos ZEUS) "TIMO ER

Vega,

Ñ A
G | Varta 38 UT, Ve= Dora, aS
BAT WAMBAS= 3.18%, Cu Gay: DO + 2.13% coo

| |

u

lé32] 1: 2%, 0
ENS: Rowe =

cw
DUS:45% RET
Volks

We
Wa,

Vegas LINE 20.087,
EA

Ve MAS
Vp? 282518 Ws
va OS %

do
sua À
A
W) Four (so A
MA

| |

ER, D LS ew [Elo Corn 62017, ow
NES AOS SORE
E

Ve Va,

haven Ve Va
VV I, een
Ve ME A
Vee Veg
Mens

cy)
3

3
[o]

Vesper Ne
Ver Ve Varo
¿E Mar eas

Vad 12 Hi
Vox Vir,
Verl,

N

Var WI Hmm 352357
Vez 258 fn 1887

Vou 210.566Ynin Zi5.23°
VF15.99 ua 712.88"

a

a
we bn]
i

[Eat =
B

Sn

sor
EN = MARY cu
Ve (UNA = 198.40% Zr

Ver Vo? Veg, y A
Ve y

= | A ~~ 180

LA
3258 ae ns
ÉCHOS 150
Castro =118.02%% cous

Ve= (BONES = 15.122 To

a «
| Vo NA so-n
NL vere, Te

390% ew
Ve” Ces « bot som
ADB = TA AT.
Ve Be se dol
45 se
aus an
2b. tA

Y

= HSM Mant woe Fam. NY
ENT
Dre

De w kr
WILDEN = 15.30"

sis. = SRP + ADB IT
OS
ANTES

\ ca a 242.57"
Bs Te ar
Len + 180-Fa2STH2L AS = 105°
t= 4Sepa(B) A WT, cows
NE) = 942% 33)

Ye 90 -[ede— ABE] = 93.5"

>\e0-(53.! ana
Ab CBD = 33.18

om ta

> \er 0.3% RS
Go 5545 =1880%, wr

Nip ASUS
Ne
Lene
we Ya
E =53,18

no!

as I
Ad: RDA = 120,00 mm
PORE = tor (Yan) = SN
ZADE> Q0- ZDAE = 84.24%
LRAD = 180- (15+ LDAD)
80=/ nov +80 (mata
= 1221 Im

sinLABD. sin 0929, R s
Se = ar? LARD =7100

ZADB= 180-[2B AD +ZAQ5] = 3:11"
LOROS cos" EE Jus ay

AAA
oe fA
LRO: 129-(ZeBD+Z BOE!
Cos WepmB = 44274, cow

Mes DO =7154.0% 15 À

Me. MO im
FR

SIN
642 1348/10

= 1.00% , DS

LS

3 40
80/2100 os HO 18"
ESS HMO La 7.68"
ZABD= mdr Lape] = 32.32°

dog [LARES] 97°
Lens es a 627
rs ule
ES
2806 = 180-[ZeBD + RCD

ARE = LABD+ZERD = 58.20"
Ian ZADB + ¿ROL ='50.24

3,2 bOrpa( Sp) 6.283 %,cw
Ve (LD = 12.56% Var
CERTES

ARD ALU

LAR? SBI?
Ye

- 156
STE

& 199% Noe
das WEL 265 oy, wy

em]

A, SUD Dons
hy y FIS UDcost|
el

t .
En =

ER Ve 24 y
1S" A

Me SAN]

=

ve
D | dou carer? Wear 37

8 sta]
13
ip Brace ae Ae |

= 2.0%

Vea Vaya woe
AS ay
Fa
a
ES

Neo __. No
CENTER

Vans ANA 707

5
4 doy B= 039% , cow
A

Ne

Va Ye
nas SE
Ne 24.0% Zs"
Vor 202.0°% WS"
Na Flow» (up) CaS] = 208.1%,

i)
SS
NS]

F Wir
sus

a Dame
op ab 10

en

su LADS
Satie
LABb= vel

Le
(Mas) = BAT,
nes Ds es

Io Neg
pre FN)
sit. sel ts
ME get
ve Uds se
RMS
Lee= ELA. Dest laces
Ves Sa RSS

UC
So
Os >
ee ve

ES
Io

postiar
6 e a

a SiN WS

a
Des A4
71 a

LABS cos nue

A as SPW
35%5-10)
LARGE cos* (ee estar

Lines Leg + ZBAC = 64.64
Voit Ver Vere

bs AU
so Tox

ibe nas, GA
paeesunes do
ellie = 3,37 Yn» CW

tr EA

= 32.30
We Gated)
DT autos

dons HA]

o
y
hee
+ >
husos lever =
Busen aan.

© 657. |:
instant Center | x Y

ua] 0.000 | 0500

(03) | 65028 | 22201

wa] soo] 6.000.

Wal ass] 2.2856.

ay 3.467] 000m

169) 15129] 34997

6558 Test Cone y

©

es

e

ES
©

Answers to the Chapter 6 Case Study Questions:

Case 6-1.
1. As gear As forced to rotate counterclockwise, nating gear B wil rotate clockwise.

‘Mating, external, gears will always rotate in opposite dir
2.

3

4

8.

9.

As gear A rotates counterclockwise, stud pin C rotates clockwise.

‘As gear A rotates counterclockwise, lever D, which pivots about its right end,
‘oscillates rotationally.

Link D drives link E, in a rocker-rocker configuration. Since link E is shorter than
link D, link E wall have a larger throw angle and link D.

Link D will be placed ints lowest extreme position when the center ofthe slot is.
tangent to the bottom of the path of pin C.

Link D will be placed in ts upper extreme position when the center ofthe slot is
tangent to the top ofthe path of pin C.

It takes approximately 210 degrees of gear B to rotate link D (and E) upward and
about 150 degrees to retum downward.

With the imbalance observed in 7, it takes longer to rotate link E up than it takes.
to lower link E.

‘The motion of link E is “quick-retum.”

Case 6-2.

1.

2

3.

As wheel C is reed to rotate counterclockwise, pin D, wich is attached to wheel
, will rotate counterclockwise

As whee! C is forced to rotate counterclockwise ink G, which pivots at its
‘middle, oscillates rotationally

‘The left portion of ink G will be placed in its upper extreme position when the
center of the slot is tangent to the bottom of the path of pin D.

‘The let portion of ink D will be placed in its lowest extreme position when the
center of the slot is tangent to the top ofthe path of pin D.

Te takes approximately 200 degrees of wheel C 0 rotat link G counterclockwise
and about 160 degrees to return.

Te takes approximately 25% more time to rotate link G counterclockwise than it
takes to rotate link G clockwise.

The cyclical motion of link N is rotational oscilation. Et exhibits relatively slow
‘counterclockwise rotation, and a relatively quick clockwise rotation,

‘The cyclical motion of table Ris translational oscillation. It exhibits relatively slow
movement tothe left, and relatively quick movement 10 the right,

‘The mechanism creates quick return motion, moving the workpiece quickly
ough a grinding pass.

“The screw threads can be used to adjust the position of the translations oscillation
of the table

“The mechanism has eight inks, eight pin joints and two sliding joints, giving one
degree of freedom,

ae Case 6:
Cc 1. Since link E is riding in slot J, disk F is driven counterclockwise.

2. At the instant shown, link E and disk Fare rotating counterclockwise. This motion
is pulling strap G towards the left.

3. At the instant shown, ink E and disk F are rotating counterclockwise. This motion
is pulling strap G and slide A towards the lef.

4, As lik E contacts the ramped pad M, it disengages from disk F. The compressed
spring N is allowed to expand

5. As ink E contacts the ramped pad M, it continues to rotate counterclockwise, but
is raised off of dik F.

6. Aslink E contacts the ramped pad M, it disengages from disk F. The energy stored
in the compressed spring N drives disk F quickly elockwise

7. As link E contacts the ramped pad M, it disengages from disk F. The energy stored
in the compressed spring N drives slide A quickly to the right

8. As link E continues to rotate, it falls of of ramped pad M but slides on top of disk
F. Disk F remains motionless once the energy in spring N is released.

9. Aslink E catches a second slot at K, it again engages disk F. Disk Fis again driven
counterclockwise.

10. The continual motion of side A is translational oscillation, It exhibits relatively
slow motion to the le, then rapid motion to the righ, followed by a short pause
before the cycle is repeated

a shat, $ Palo sure
Se Fons . obte
73) qu Zo AR [EST RL e
ON Lei 1%) AR esse “Soy (Seid
A TT RES os Y Et 49,0 192750 pol Th)

EY ICO) len

dre

da aw. 1g ss 4 Ys Hu a
Ello; ed 191% [alu [onan DELA
Les 0-104 BI Hr by, = 200m 261.80 %
TA E Fu EN
Rico AN C2
Fa] we oo Eee sr
to, 00e» (CH) = BRK ese ty
p= npr sn 333%)
PEN Gre I: sis Hobo aed
Gin - (1519 4 24 (e513. D
de = 1203 = lage » Cup
aj
Stage I’ 04t 42
0:5 veSt s=25t"
Sue ZELSS date
Sid
C10,
A E
sal ke
at 428, 5=700 Ko=-IL TD

mi

[A

me oH
ate v al ite e

EA
ARICA ey,
ak AA ARS A + 2533

UT ser:
Ver a Botto Bhs de,

au, Y

Be gana 12335

ES En A4, Mty Sb u

Arge 12330

Stage 2? Das AR ew +82,
er ie

24

zum

©

e

EE A

lors, 50" arta At
ARE (OST 125 mm

[Stage 3:

GER Y SO, Mes

Ms 125 Am
Stage 2:
Suns DRA, AR
Be: SD
yess 2D
h re

¿50
ss

na]

a
|

UM] 007300020) 31.1278 Ka
EYE THe Yoo

=D
OS D
o5=D A

El t
[AT 2000 (o): 20.44 cas
DIESER Y 50
oi (D: 320% ATT |
ENESRET EN oe

= Bo
> tan (SSE) MUS

[I-18 ]o,°300pn GS) LATE ca
GANÓ: iR Ñ
ATOM nr

CAES &

Beten (LEP): 0.48"

Ge MY. STE
BAY UD: TOR 87
EC) (à = 14400 VES
CPE Re
Ben RIA - Suge EE

ART
0281." WOE

CET
las: (wa TEL 707
ke 98: 720074 20%
O, Cod 2
oven x

Bs tan (AUS ¿ÓN

|
ane |

OÙ w= 3000): 31.42%, cu] 2110 0= 300epm Ey: 31.4288 040

> DGSE sa WZ pOr 17

€ at: Goold): ‘SOD, m dés God (9: 1500% Sa
E Fe 2, Oe ESTE

= 5158 iD = ae.
! AS E Fig” Beta (Ya)
IES One Ben “aL
: 2] [Ea Ye Va
ME ves ce 53%
ER so
Menu ON “ re ste Ey}
An: ER

No: On Ag
un E Op, Ons (ad we
3 Oy ES AS
li ET TANT
_ L des ANA Ta
5 Pg [ETE = 3H,
ÿ We Bota Fae 35.0
+ 1.105%
Ga TS
Gp ge Ae 0
SN a) Ong [rast 2804
Cage 135282 ALI LEA ota (Es) +60

Cats as

FI

mi

q

Lie

ce

o|

Fr ta = LA
Ken CA: Ver a 4
ara,

Sas db)
$
a

Neg APE

. Gig QAI
QE BBA y

1 Sd0qpa(E)- SLB ew

Mee (SON) Bay Zoo

Ye Ve ee,
VAR
Ve TRAE fe

%

Sa a ddr
E At)
& “ Su

a /\ &

E ams

= SpA |

DAY y

= Den CB) tel
Ves (ON YA = 240.8% Zur |

= 2800) % Ys
ON

20)
x af

y

Za rs, 20. Me
CAE = 410904 777
Au
Ent Vase
M DOH TA
LR Oye,
ij

UE
QE: (ood Ch =20000"% 107
O Thot ASA

> =B\4b1" a

FA ganas | LRM, cod
DICK DEE Terz
SS
Ve Var}
AA 57

$

de eat ae ot,

cfa. FT le

Qc Tag = ye

rg Gas, EN

feminine

O

. helm.
Tab 04

e324:

ESTAN

AYNA

ALU ET
À de Aur

Va
A ET

Pl

a ozono

= 20.81% us

y VS 2

a LLO
Ne

fps VILA, 4

Aigo AREA
CARTE OY, 0%,
VS

Aya,

Ca

OS

se

737 Eu TS
oe 80 mE, bos fr A
A y
Aa
HD)

eR] Nele
AS di
BES
se

PHL
Vo
Vez 1040 —

Va ne

CNY TS
“MAYA

Re AV,

> 21007 NN

= 02835, co

" FLO TER
VE Vga
drt ®® Ve 2 GANT Ar
À UT
Ve RIS
Adra gra rock,
EAN 7
où (US)
“ ar
Be WR,
10 BA

Goes Oe? ER

EE

far EE SEE

E

‘ave 154% Ayre
ARC VE

ee ete,

(9 a os
Ou

= NUT 7835 % reel

Oz AD VEAP

fon ae BR

+3 Pe VHB oo
A DTO

ME Ver
fonc: se

eS 40% ASS
p 535% Sat

b= TAY,
“2K ogy

psa

= DOC ANT
fon db 5372.12 (ES

oe ORY rk, 2

734 71
a Any Mg Sen aay
p \e28720% AA AO ITS
EU ven N agas)
GES N ler
yy betty CS Le e % N
Le eh „ARE
CAS y, = A
“pig hy OFF Lt De y le ù
E em
NEE “Gt an maa | |
NAME
ae: A mal
> UTR

EN
CSTRTE

ae ORT = LU

B



Ver re Ve
Va Sy, 57
Va: DAME

RO a e

ie à
Ge o Zur

Mmeasorng?

21 m7

| lye MY, à

AO)
= (042% eeu
Ve (OO NET

No
x
Ne VASTES
L Ye ven sy

Deg Oe as =a} rag
a:
"A Gus
¿E ELISA
0% 08 (Md +300% aN
EEE Anar
Che (at: MALE VER
& ae 783.50"
A aan cc
PRES RES

1207

From CAD:

138 | dor AN IA
WLAN ay’

toy V4 = sag
Amok ar Hah va ot ES

Ce A = re

Ro

MOST = 47.12% 4
ie
la

A

Wes 2.11% ARIS

A '
MS
E Mar

Ot: bil «200127 Gon
Fo Doe a TEA A
Ge Gar = 2.028% cu
de Gor, 215.4 NH, ce

445 20rpm( Tas)
ay : PON,
SE

de Ve Veer,
e Bron CAS
aa Nas 384% 505%
MUSA age
ande RO
CN

ee 1S
> (AY ee
252% pus
LU
ES mes A
aay Ge

boxe (248
&u> LIV = SS]

N ac
‚Ast

on CA:

Red: Geddes

fr

wre, m

ES

‘a

AAN

STR cos
DN le
Ve

DES & Con CR
ea

Ene Gr a gs
SUS foam niet
OS =e Ase

Re ( Vos ae Ass"
ERST LUN
Dm QD: OF MH kur
Le RSS = 400", c
Aus ya, = 2.0814, Coe

Ar: Varga (7/30)
Las cous

(1.288)

ei
tn me ler
MN
AA Vedder

% Be
AE y Ayes
A, EH mes
Fm bib: OF WS ~ 807
FR = BBM, cu
dus CRAVE = ho, CO

Taq 3

2.
= A

SP: SLR ge se

= 180000 (TA 218849 0% tw
MENO = Hea leo?

VERS Ve » = Vo

A i

> ASH
ake AN

RL
Ve 23310 —7

Ma + Va
Sia TBM Sm LD
Va 33.20% ST

a. a Va

mo Les.
ER 4000"

20 ZA

>

Del 20330 +24000coskO
LOMA OCs TAL

= OL] sa 10 + WOO sind.
° AD sinh 54-08, S14 18
Oke —10S1l,

SOS TEMA
de: se

ie oe ORAL ane Zar ~
AS OE = Gog(= 97 ZEN
© % Ss. gh 30 SN
Ti o SET» ns TES
| eu «sn:
le DEM Of, Zur og 4
FAR CS ot.
Ve Ruda ha CeO Ol, Cg
Ve Van Yay STE ER Pe 102Messto ~Aeos30
RS
Vig PASS ag:
16 ARE
Ve. 5 > Ve HAB 518 ST His MM
TON E Aa Ke Y
D gr LaS Ate PIE
ON
ato Te Varna te a
Uc ER
FEU © Fe BE x 37
Be AFB (123% LON
Sören (AS Go [RL NEBEN N ERS
VasS10019= 10.084207 a
Nesp Vg ne CR hana
VE Jrad - Ed lo Aia OF,
N 057 58.06] 030 - 125 L0-13,105 es
+ dog SR
mn
= 4 129 -58.del six BD + LI 25 5 LD 113116501571
4,08% 2 i OR +
ar DENT nn au AAT

"6107200 + OND A |

CN (AD
$ AMO wy
AS Y AUD
peur SEA

| e,
apio Me A oy a
cor VERA ea

e E de BB ES) Cuota. 125.09 IC
BAD: 180- (45130) 1 NG
BD nahen en ea me
Lie Abe (is ss a a

e ES IZA stone
a vege! BLAS = ut i Oe Sag Gon
N RE GER u Gig ED, = LOG BT Cut
| Lives (RES) ar GE BR. neuter défi |

Ba LABDELCBD~45= 79.08" Es Gy Ok 2 Ay pg

Bus LADBr/BN- US TON" bone TAI OF SM. 80 83 costs
LS +100 cos 4S= 10:05 t0878.04+ 05 cost |
medi Vet: “SAN 1583+ EINE 88.88 SAS |
Obs 455° 4:55 ALA, 12023 + Den 45-1605 517 18.04 ~ Fg sinMl 1G)
© ae cw
EY DISA OP Poem A cu 36
Bi Aus" E 2.083, Te ON 00,27 $ ex

|
LE a Wes Ves Veo, Ne
Sn FV Ce. @ 16.38 o,
ee ©
es CR mbr es ej QE
—— ea - IS br
yA Dep ONLINE EE

para

oro: WISN, ROAD
249.227 sauver | Og ws ag aor
o Ure OE = 06 qe e Oi
tt jae ANOS en et coses =
cat

72 [idol nd 20.12" SSSR Es 2ORHOSPSS = Bi
A Verbo ROS Asi 2D ALOE gnueeee =
By LRW- B= RS SAO RR RTS es

&
_ 5 Ral=tz oo. eS” GET TO EL EE
toys Yer = 6.465, cory is ole TORI UBA cor |

A PR ho VOY As N

La es (RE) ss eg Ba ing AZ :
: aN gm Tae Zeit

=180- (154d) = qu.
PEACE

4
RD

|LAD8= 188 =(£4,3149b.

162: LCBD+ AABD 19"

Eu

uf

|
41 Ab: [aris = 322887 LETTER CHa) = 125TH, Cow
LESE ie

LABD= sun (EEE sinat.d)=

Our ZADB BIG = bb,
OST ATED 4.
OE= HD ALIN. £238

SD 15,080 7 ZU
Ve Vas aye
due Ke 550 cou

1S Bb By,

ORD PFR- SEN)

. Ya. Mi F |
2 Sap? REST CES

eos 2<35714" is
4131" eh nary ree Sener aL

mst qe ELISE

13

Assume

ors Wt
ON ak = ays + OO,
heer $02 eosubid-+ of eos 23.4 = “1295 LOS TS
AB BES ART 05 34:94 = af, Cs 5.07
Vert > -8.0L sib. WA QE Sie DLL 1890 Sm AS
+2bsn!S=,11151n8 464 Of sin $5.04

= 20m) = ORY, Cu
Ve=@ 044 (3.29) = ROG NIP

OST

Ven a
Ne WS SLA

N 3.00% BER
Vee 1,20% W108

OS
ate Gode Bed Bo Mi,
08 WEY 180% 37 dO
ere DANE WA, of OMY, says
Pu: OCIA EZ Cin? ORAR
SH (GA, Of INTA LOS, oe SULLY
PAM TZ, Ope TUE DES»
dar ao md co

O

Engineers Computaion Pad

No. 997 011€

2 STAEDTLER”

(8)

7-5) As BUS LAM, cw
lil Ye MO GAN 1574 ho
le Me Ve = a

May Mega o] Ne 292% 37
ER eye Y OEM 387

Gras Ra tee WA
Oy: Ost 07, We BEA.
A echo, Ve
AN
OS
PA y= (TOY, = ITH
eases Que OB TEZ/ VUE BZ alii

oO
&

7-60 | " 7-01 Vea/aa u
Ver Ay wo
Mn Bai. KO
3 e N
Ay 2Veye ©:
Case 2 Ve Lor Se OREN
PCR) “om 99
= 00m L307
Polo, E!
%
Ay in Wr
Be
052 Vir Oe
(smc)
= CLF

Answers to the Chapter 7 Case Study Questions:

Case 7-1.

1. As crankshaft I rotates 30 degrees from the postion shown, slide J will move upward.

2. As crankshaft I rotates a few more than 30 degrees, he crank will lose contact with
tab K, and J wil fall

3. Component C serves to catch tab G and prevents slide J from falling toa lowest
position.

4. After approximately 270 degrees of crankshaft rotation, crank D will contact fever C

1 release slide J. Side J will encounter a fre-fall.

5. Pin B serves asa stop, determining a lowest position for slide J

6. The mechanism raises slide Jin a controlled manner. Slide J will ten fll slightly and
remain an upward position for a set length of time. Eventually slide J will be released
and free-fall o a lower position and remain there fr a shor time.

Case 72,

1. As the rotating machine table tums counterclockwise, component G pushes roller F
causing a clockwise rotation of ink E.

2. Spring K provides resistance for clockwise rotation of ink E, main
between Fand 6.

3. As he rotating machine table tums counterlockwise an link E rotates clockwise,
Link D is pled towards the right

4. Spring L create a force that tends to reduce the angle betwen link D and E.

5. The hood on D and groove on is called a ratchet and pawl arrangement. As the
ratchet wheel tums, the paw als into the groove allowing rotation is single
direction (lockwis in this cas),

6. Item His a ball detent mechanism. I is used to hold wheel Bin fixed positon, until
sufficient force is applied to overcome the spring loaded ball.

7. Asthe rotary machine table rotates, bel B advanes clockwise one position,
releasing a rive int an assembly machine.

contact

Case 73.

1. As link J rotates 90 degrees clockwise from the position shown, bellerank H will
rotate counterclockwise.

2. As link J rotates 90 degrees clockwise from the position shown, pusher E and plate C
move toward the lft

3. As link J rotates 90 degrees clockwise from the position shown, pin S will also move
toward the left.

4. As link J rotates 90 degrees clockwise from the position shown, guide pin R will
move along the groove, left and upward.

5. As link] rotates 90 degrees clockwise from the position shown, bellerank P moves.
toward the left and rotates counterclockwise.

3. As link J rotates 90 degrees clockwise from the position shown, slide Land plate M
‘will stay nearly stationary asthe motion due 1 the translation ofS is counterbalanced
by the rotation of P. Further rotation of the link J will move he slide L toward the
left as the profile ofthe groove changes and imparts a clockwise rotation of bellerank
P.

‘A connecting link N is required as link P rotates and drives slide L, which is
constrained to horizontal sliding.

As link J rotates 90 degrees clockwise from the position shown, slide M and C will be
nearly parallel.

‘The continual motion ofthe device will move plates M and C together on the left side
of channel B, and move plate C alone on the right side of the channel while pte M
remains nearly stationary.

Chapter 8 | |

8-1 Crank Ang] Theias] Gamma] _ Sider DES Diepi | Som
eo) m) Gm] Linke] 12510
17860, amm] 28000 Linda) —~7 00a —
HOTTES] 22504]

108.93) 74430] 1.7117]

7552| 6.7777, 0486]

| 6.1039) aan]

au __

a 7

za 98] =
#2 =
33851

1523

14896 =

184.10)

Ofen 1000
Unk2| _ 25.000, mm
Link] £40,000)

° o - © © om 90
‘ran ang ea)

7 oe
rei Lien
2 ES ra]
& ES tal ol
EE = =
a!
Ken

va
‘cal

islelsiel

ET aa a saa a

em oe Goda
tasers esa] mr

30] 20.00! de] — vaso —17023 Fiese)
ol 2082] —139[ 1651] _ 10008 ess
sol 2102| —134[ sous] 1er44 15325] re] osa]
Too] 21st] — ro] — ser] | El
450) 2199] — 008] 2002] 10000] nee) ss
| 2247] 043] 00) 16028] ‘ano Er

28% aa
zul 2a as "seal 188 181 0

zes 108]
mal — 67 en)

eee
PRÈS.
SS Sea sun
8 ess HE
EME sr EE LS. = ı
+ PEER == |
SE Dr Er me —
LES. =
es = =
ein
ee a
Ee =
er an
mn} +
ETA
À ju ets
= SE

CE EI

| eal Tess) ss)
AT MA
E GI sl
A1 #01 280]
243) a 2041
Ei
112741 100]

#3] 82144

heleellalls oras
É

Dore ir
8-6 63h E
jee aná

EIA IES ETE MEA 05
RO Ba 194] SI ZEN HO 068] 172
RO Bo] 180) es ML 4411 -1.00| 281

aol root sa) EMOS ME

BE 09/81 BL AT tt 27

180|—127| MOD! BOT 0531 946] 00 127.
iol 138) 183 EBEN
so tea 15] Ba af
ol 150 ee! 110} 90)
Sol 187] 181 187 520)
‘3018.31 es) 10
Roof "| oe

H conse

=.
SLIDER-CRANK KINEMATICS (length, de, engtvsec, radisec)

von crak oot + Coupler * + er ses
Angle Speed Accel. Angle Speed Accel’ Lengh Speed

0 40 00 32 057 05 9 17

30 40 00 73 050 LE SRG 16

G 40 où 1042 02% 20 SSA 22

% 40 00 NS 000 1% 514 300

m 40 00 mn 0% 20 479 ar

10 40 00 73 0 LR 456 164

10 400 On 328 037 om 49 17

20 4m O0 0% 04 415 460 154

200 400 00 SM 02% 1 46 270

m 4m 00 4% 00 323 300

wo 40 00 38 02 #1 230
30 40 00 om 04 50 M46 18
360 40 00 328 057 yo 17 A
Maximum 00 115 06 23 59 300 1028
Minimum 00 49 06 23 M9 300 BBS

8410.
SLIDER-CRANK KINEMATICS (length, de, lengiísec, rad/see)

Crank se 1 Couple 8 Pr
Angle Speed Accel. Angie Speed Al Leng Spoul Ati
O 1000 (D TS TE
30 1051 100 954 165 832 91 3502 “11653,
WO 100 m 0 WG STR 724 0
D 1146 100 479 000 26 S076 -10776 I
m HO 100 HT LI DM 88 24
130 DM 100 JS I 4163 90 8588
mo 127 109 a 22% 220 223 17 Im
20 BIS 0 076 20-40 MIS 630 za
20 DS 100 A 122 M 4764 140 705
m 94 100 50 522 1301 948
mu 100432 os 116 «11038
300 1 100 0 ms 6735-19011
30 1502 100437 ns 1079 “MR
Maximum 100 MA 23 M3 175 Ina 124698

Minimum 100 59 (23 350 4295 -11028 19108

Transnission
Angle
167
1326
1096
785
#6
26
33
ya
362
51
1162
1492
Asa

167
62

Angie
1356
103
1065

752

405
ns

CM

eue Crank
Angle Speed
o 1800

20 1500
@ 1500
91500
mo 1500
150 1500
10 1500
210 1500
240 1500
2m 1500
50 100
50 1500
56 1500
Maximum
Minima

en.

Maximum
Minimum,

FOUR BAR KINEMATICS (deg,radsec)

e copier oo

Angle
1:
25
256
267
257
m2
202
ma
153
ui
10
154
155

267
Mo

Spent
ss

29

us
vo
va

19
157

won Follower +
Angie Spar
251 08
ar a
ar 32
ns 04
0. 49
CRE
5 150
#7 96
199 317
459 61
#1 498
a 04
ast cas
2. us
27 ps

FOUR BAR KINEMATICS (seg, adísec

200

ns
ss

mo
#70

Palm aus
Ange Spa
150 15420
ma 1604
bo a
204 16510
no mn
55 mm
ne 62
59 4195
ws 15007
768 m
m 20026
0 25534
180 su
CET
HA 2605

Transmision
“Angle
164
wi
559
ous
m3
ns
ns
ns
ms
on
359
on
4

ms
14

Transmission
Angle
as
302
466
er
on
383
20
ws
a
os
466
302
8

920
as

Answers fo the Chapter 8 Case Study Questions:

Case 8-1

1. As slide bar Eis pulled to the lef, link D rotates clockwise.

2. As slide bar E is pulled tothe left, side block I moves upward

3. As pulley J is rotated, being eccentric from the center of rotates crank pin C will move
along a circular path

‘As pulley J rotates, slide bar E will rotate about it's about axis of shaft A.

Moving slide bar E tothe left will increase the eccentricity of rank pin C. Crank pin

€ will move along a circular path of a larger radius.

If sleeve Fis keyed to the housing, it remains stationary encasing shaft A.

Item G is an enveloping gear that mates with a worm gear.

As item G rotates, the threads thrust sleeve F either left or right.

As item G rotate, slide bar Eis moved either left or right, depending on the direction

of rotation of G.

10. This mechanism can be used to adjust the erank length, which the shafts spinning.

| |

Liam Se Soar = EBA DATE
Jm 63
I
| 9
30. 35 ung )
ı ı | y (do)
ptt me

y EJ Gan = BE TT SUR = Weer
4 TS

[E

o
ES
J

ra

=

E

® = ime
FAY Sms = TRY 227%), = 13.0 rpm |

AT Gens DEE: ones Alarm

za

ra

W306 = Hho EE = ER

Zep om

a]

FEE ous
Tess “tive, mx Vel,

wit oveor then:
Noa Yr = Y
Oman > 00

5%

ar
im
0

0000
0467
033
0500
0887
0833
1000
1000
1000
1000
1000
1.000
0750
‘0.500

0.250
000
0.000

Since Fall OR va
less tame, mar vel
will occur Shen

Viney Mrz 18/2

YA z

Follows Diplcamet a)

ar

(i)

0
0000
0168
0375
0563
0750
0750
0750
0750
0750
0750
0563
0375
0.188
0000 *
0000
0000
0000

O

9-16
Since Lol Orcos ín less time,
man Vel 4 aceel Wil occur then

bey? 245 Y ge AL
un AY Ae

ET

Both Lol sequences ace.
identico) + exar mox
vel + gore)

roy rs ad
Ae
Oman? RENTE
ENS

188

Bash

y
JL
z

|

9-14
Max Vel taceel ur

In the Final Gall sequence.
Mana y

nas SET

or ipisament

dit)

920
Re a een
Van ETES
23.1
Quay W* Narr = y
24.81%

Moe POY aus

9-21

pe eos in = =

Vase" Yor = HY (ands ==.
= 128599 Soto

|
422
Mex veloc 15 dunng
@ | Leah sequence
Vinay 2 UY see
=2%%

Omas 27s = 2 Hu

= LR
a ee
Cy

Max velocity 1s doing
[rise sequence

Vinay = Y > Ue
=1.43 1%

nos 2e Yu
= Ae

Follow pace

Ce
8

3)

ha

ES
=

ie

Mie

a
IS)"

N |
RE
N
=: =

pe]
E
ES

4

1-20

9-62
Re e.
zu
a (sin bd = 38,
P= 180- Was 2

SFL Do

85 mm

ET B= sist [BER sin Le 204

born) "028%; ia + Ton (E) 21. 33°64,

E

w

7 SS AA El Dean ue HUE
] BD o nn tai dr ERY Seas ud LESC
SOBA Year” = rea lo BUN EN
Ey, 05
©

was rl): gan
eet (au) cos (ase-nd= same

barsa (Sas
5492-389)

* sa

Answers to the Chapter 9 Case Study Questions:

Case 9-1.

1. As shaft G turns clockwise, item E moves upward,

2. Connection between item E and Fis a rack and pinion gear joint.

3. Counterweight K balances the attack of papers sitting on item J.

4. As paper is used, the weight of the stack decreased. The radius of item H changes to
reduce the moment, and hence the force countering the weight ofthe papers.

5. A pin is used to join shaft G with cam H, constraining both to rotate together.

6. For smaller stacks of paper, springs are used as counterbalances. They share the
‘common feature of reducing the supporting force at lower deflections.

Case 92.

LAS cam D rotates clockwise, the immediate motion of link B will be clockwise
rotation, followed by a dwell,

‘Cam D isa plate cam.

Item C is a roller mounted on a pivoted follower.

lem F isa spring.

Spring F that attempts to maintain alignment of links A and B.

Item Bis a screw.

‘Screw E serves as a stop to limit the motion of item A.

Item Bis a pivoted follower. It moves together with item A, until stop E is reached,

‘When A is in contact with the stop, the pivot point for link B changes and follower C

traces a shortened radius

9. Lengthening serew E will cause the pivot point to move from the bottom of link A to
the top of link A for a greater portion ofthe cycle.

10, Shortening screw E will cause the pivot point to move from the bottom of link A to
the top of link A for a reduced portion ofthe cycle.

Case 9-3.

1. As rod C stats to slide downward, cam E rotates counterclockwise.

2. As rod C starts to side downward and cam E rotates counterclockwise, plunger H is
forced downward.

3. The strip of sheet metal clamped at W is contacted by plunger H and formed into an
inverted channel shape (LJ )

4. As rod C continues to slide downward, follower proceeds P past the lobe of eam E,
‘and plunger H raises,

5. As rod C continues to slide downward, the angled surfaces D contact slides Land
force them inward,

6. Asslides I move inward, they contact the sides of the steel stip (already formed as an
inverted channel) and bend them over (€)

7. As rod C starts to move upward, he slides retum tothe position shown, and follower
P once again rides over the lobe of cam E, The plunger H again strikes the top ofthe
steel, forming an open box profile over (==).

8. The mechanism converts a strip of steel ino a box profile with a downward and
upward stroke of rod C.

9. The springs contacting slides ae return springs. They return the slides to the
position shown when not being contacted by the angled surfaces D.

10. Spring under item K give the base some compliance. As the strip steel W is fist
‘contacted, a single material thickness is tapped between Hand K. On the second.
strike stroke, two material thicknesses are trapped between Hand K.

11. The linear reciprocation of C can be actuated by a slider-crank mechanism, another
cam system, a hydraulic eylinder, along with a variety of other linkages and
mechanisms.

Case 94,

1. As gear K rotates clockwise, lnk F (which sa its limiting rightward posstion)
rotates clockwise.

inks J and F re configured as shape-crank mechanism and exhibit qiek-retum

motion.

3. A gear K rotates elockwise, he motion of slide D is slowly to the right and a quick
return to the ef

4. As gear K rotates clockwise, gearN rotates counterclockwise,

5. As pear K rotates clockwise link Q does not move fr the next 180 degrees of
xotaion, then rotates counterclockwise.

Component Pisa plate cam.

Item V is constrained to vertical translation.

Link Q and link V are coupled with a connecting link,

‘As gear K rotates clockwise the workpiece X is sid 1 the righ, then lifted upward.

‘Timing is controlled since all motion is achieved with a single actuator.

10, Pick and place mechanisms are used throughout a manufacturing facility.

= dub sd = Min
a as A dea Nun
ee drets» Va
de ve née any

wi ed du d-2he 5.86%
pe Tan Mp= 0393: /

103] a+ Nas Vive 280
durdente 25 «HS 24205,
SOL + dar dr2a= 2.628 spe

LOT ge min == ams |

Le ADO Coded ho =

ey

ABE ro ahs on
Be md =D

NTE ton make wth an oe sd)

LE: ym > Aud dor 2444

ACTE = =D

losJa- E dress ME den a Bets
AS 215 Ce}, E sat
tye TUD, à 7 Pye TD cos aa = 0198

Le 128 > Cod Raho ge; 29/4
Ze rue gone ob an gear
ABE ye Se 015%

BEY Brandt = = 036

CG img a
Be FO) C0825 /ag = 05m
Ls 0, > Comélhos De. 1964

18 ton eames ge (os dy
ren

Cady: Corde = 2406 à Car are = Any
DAT gs ras de Bei AA

ya: 2105

Art Dennis ann

La BULA 3 cb Cube» El 31 87/7
Notes? Bt pri thon q

Abs à . IB:
ETA 001 der
Gaye COCs bla Gest

BA a ss, a: any
ACTOS 125157

10-10

204 de
EE 3G IAN

+ Sige

10-11

pense
SRW diet

D a: zas a Woes
IC 285

JO 4-28: 297 dr Beas
CCD EE "2

FON} cogs Al EC) JDA vo (re) HBB rp coy
3234 Spm eu = ® be
= INT med (M) 155
El Syn Ve uo “sad 26128,
We Gide TE = 138.5 5
E ed. ala cu | Et Loge Bt AM) = 2875 pc
$ ‘23 0.1
wa (as 38 ; a
Ne SSSR)» 15.8 By We NA 90.33% /

MA) vee 5: + 9: Sa,

Cia (ar o aa y,

No Ra N= HD ay das 20.07
Nas 200 Hey

1920| ve= 4: > des 40 dy

C2 395= Edad) > dé
NY

Nae Aie

Ba Ram a, Ba,

1922] yrsd =r a= 44,

vost kr examined

C= 2.086% (9,+84) 242 S ES e de 24
Ne Pad Nils y Az | me: NA
x N wiesen
Ny Bl Naot un nz,
must Toe, examin
BES] ve= 6 > dee bd, loza es > 4.30
C2382 4 (div ba de boy | cede EG dd Pas ys
Could vse Gly | ee die Sige
R= le Would avoid mél “Py =
Neste Nas bk ower topaulf | > 20 eco
fm

|

CANA
ep AN 2 1SDBrpm—

EXA

10-21] From table 15
Bhp Ai Dom Pa > By

16:28] Fron ae 1.3
Bip À Bree Randy

Me Ges Bes VR 983 = Aa
À Een Na= 120 “ N=8/ Nes 807.
[OS rr tah | x 18 uam -
ae 18 Ne 27 Nas | BOD) = 180 som
CES 453.0, mp de 13.309
Ea ST 10-30] From tbe 95
Une + MSrpn 7 P4=20 0 wee LUS com > he
Ves FB = 3.08 ye: MB. SM
e Nelos Nin ihe ENE NEBR
Po HEC) = 5150 Send] we aye BLM = 22 opm
Ae OBS d24% | de WY dr

AIT From tie 93
EN 10 hp 4 WIS rpm > BB

10-32] From table 9.5
ERA > GID

VR= WS Tre, wee ID 20.03% bar dur bd
cn aa. ÓN) de ECS = (46d)
ae = dee Ei
Nae W 3
re ren n AR arm,
Load bey Stoner Seal are R=
ALA as
N,=20/ Nas 107
Dur 1015/7 > 1.8 om

em Frum table 9.5
A Brom > 4:5
vee EN
C=20= LG al)
Fer das
ND Nites
Nee 8%, = 206 rpm

[OBST as
ESA
dex 24. 2GY ys
> 1303 radios (Loney,
= 2.0 coins

9-33) qe ras Lol ass
Ela td Lee Abd | As Adj» MENA U
AD «Boa (AER) = Th rave SA y,
CNEA 0-38) 4-8: 15.

ase A = 314 ny

ve oda 002 2g: 26088)
Loa RAS 10,6 ven
ar 10.6 rp

03%) a= 38-2.
Go = Born Gath) = 502 A
Veud= sds

ffo-40 ae he aye
ee
We Weose = Beasts 11.27

Pre post Td cose
ATA costs Me

m werden, nes Ser Has

OAT a EEE

€ a 4

Re eso = 18.87
Rare Enid D

vite ag GR

[ln Stes

REITER
30m
a es
MY

TR
cost = Wen

Nei Nagy Des de
RaQ este Toy

pu ee $2 3.0
Ce U6 aan
Hana gears
SES
tos y = Ma
Con Use
Ne 0 / Naty Pr
VEUT Pye resid
10.607

[sa] yp. By

td, 9.40, 3:15)
he May
fond, acordo

% 15.017

| |
[0-455 yg $-3157 lO=4b) ve- 2-50
Ur or A CUEE)
doz \ 2 ee 10,47
dandy: Yen wen) fonds cts
be 4857 Yer Woy
DAT ve: SR = Lo O48) ye= $800 = mw
Single thread: Er
Nas MBs Some ter u
dl ar + 5258
Ide Be 3295 1 e cdo Alita > en AS ons
ora} ae 20 o o. ¿A (uo) 100 me
[nie hr „82 (eed)
Sein Ardo anal LEE + Za "85 in

varo der ES =D
durées ce 2051.05 ee

E “repas
ke ae. à SE LE eg
CNET E Ey GUY rad)
EL mu 048 à
alo. eN c= ga Se
= 112597

10-56

en

= 244 ran] di

po gan
= 35 Th rpm WA

Los? gale AR ea

= 2520 wy

CS "x. as Ex. oS).

ay
© DU ge Bara a
400 + 8 NN 2 55 Ne |
o ER
recone A Mccces |

In Bee

DADAAEROY th 30 Nilda
"80 oi À AQ (LAGO = Das
\ + Lo' cu

FSSC

Matos" 8 coy

Du Na re
r N een
rt À EA

Landes fio Eo
4

BB 0 25
Loan LITE TC) Le »
on pa
dau à
Seat: Rea pur

Mana 251-3.

CH rk

TS
N,

ns
vera

pd NS

AED ce

Ts, Eos 20

Ce Los TOTS
can

sda

A Burg! 251-2009: 0 Miss

ws

LD Wale Walia Ny SBD]
sel ay
sur à
5
woe
ax ou» ren cone

ON = 2200 cpm u
toy (Den) = ZED em u

=

Cd > Bb Cys

lun]

A O]
su, ot = — NER Nee IA
u 35 u x, 2-4-3 &
o Le, 0 AO A a AR
A wy ya
(60) > Born cee a
Ot AM 048 -08 211

SO = 33 rpm of

Brom Cuy
CaN ie co 7

10-11] Net@}20 NS Wee POM) Nez Hew Was

Ns: 3d N=150
loas] EN
SUR OED BE 1 ein o in
Ml AA AA Meta A A
4 a RBA 4 0 = 6 4 5 =

Une 9.28) 24500 rpm cuyo
oa O = 15 qe ug
(to BRE. (003) > 176g Cu

À (D) 20 ep te

(nd 00 cpm coy

toys Syed} 490 ren ey de Elda > Biome 6
UP Bye NEDO Rm cy (400) = 318 cpm camp
to. OF
ET N ea

Nas 25(B=20 Nyz32

1 2 tm 3 4
MERE E
MH 1 1 4 +
ALO 1 2 ©
Outpst hable wil ot ratte!

Answers to the Chapter 10 Case Study Quest

Case 10-1.

1. As segment gear A rotates counterclockwise, rack C is pushed to the left

2. As segment gear A rotates counterclockwise pushing rack C tothe left, gear B rotates
counterclockwise.

3. Once tooth E disengages with the rack, the leading tooth on segment gear A will
engage gear B, driving gear D clockwise.

4, For continuous counterclockwise motion of segment gear A, segment gear B
reciprocates counter and clockwise.

5. When engaged with gear A, rack C is pushed let. When disengaged from A, but
engaged with B, rack C is pushed back to the right

6. This mechanism creates reciprocating linear (rack C) and rotation (gear B) with a
uniform continuously rotary input.

7. The constant engaging and disengaging can cause shock and vibration problems, if
the mechanism is driven at high speed or with substantial loads.

Case 10:2.

‘As link A moves t the left, link B rotates counterclockwise.

As link A moves tothe le, gear C rotates counterclockwise.

As link A moves tothe left, gear D rotates clockwise.

{As ink A moves tothe left, link E rotates clockwise

‘As link A moves to the left, link F rotates clockwise. Note that the configuration of

links E and F form a shaper-crank mechanism and exhibit quick-return motion. It the

position shown, the mechanism is within the slower portion of its stroke.

6. As link A moves to the le, link G moves to the le. However, due to the quick
return nature ofthe arrangement, link G moves slower than link A.

7. As link A reciprocates back and forth link G also reciprocates but with a smaller
stoke,

8, Iflink E were rotated 90 degrees, then link G would reciprocate with a larger stoke
than the stroke of link A.

Case 10.3.

1. As gear A rotates clockwise, gear B rotates counterclockwise.

2. As gear A rotates clockwise and gear B rotates counterclockwise, gear C rotates
clockwise.

3. As gear A rotates clockwise and gear B rotates counterclockwise, gear D rotates
clockwise.

4. Alter the handle is rotated upward, gear B disengages with gear A but gear C engages
with gear À.

5. As gear A continues to rotate clockwise, gear C rotates counterclockwise, gear B
rotates clockwise and gear D rotates counterclockwise.

6. The mechanism produces forward and reverse rotation of an output gear (D) from a
constant direction of an input gear (A).

7. Engaging and disengaging gears while transferring power causes abrupt shock loading
on the gear teeth

Case 10-4,

1. As gear B rotates clockwise, gear C rotates counterclockwise.

2. As gear B rotates clockwise, gear D rotates clockwise.

3. Link J, gear C and link E (along with the frame) create a four-bar mechanism, The
rotation of gear C actuates the mechanism and causes link J to oscillate, pivoting at A.

4. The center of gear D will trace an arc, centered at A.

5. Piston G is constrained to horizontal siding.

6. The mechanism creates a large stroke for piston G.

Case 10.5.

1. As shaft G rotates as shown, gear H rotates counterclockwise, when viewing the
mechanism from a right side view.

2. Gears F, J and H are bevel gear.

3. tem A is a nut that is pushed leftward withthe counterclockwise (as viewed from a
right side view) rotation of serew C.

4. As item A contacts color L, the serew is pushed to the right. tem K disengages with
gear H, and contacts gear J. This action results in the reversal of serew C and nut A.

5. Item O is a spring-loaded ball detent, which holds screw C from axial translation,
until enough force is created to overcome the spring force and move the screw.

‘Setscrews are located on collars L and Q to alter the stroke of nut A.

‘The mechanism creates reciprocating, constant velocity, motion of nut A between

collars L and Q. This type of mechanism is common in winding machinery (such as

cable on a spool).

HAT o> Boon
TER

ae 195738) = 180.64%%

YY (N)

11-2] o, EN [N
eg]
be W5QCTAD) = 120.420

Ne (o 5/0 = 301 % (4943)

lbo,= 1200 (Ad) = 125 lolo Ys
N= (rs y)= 628% (O79)
= 3142 Ams

= 158) Pin = 1505 mia
EN E we 1-9] dog Reo
. .
= 1D (1200) 3000 tw = BS (109312590,

Cor IS) = 117.81 M/s
Vein. 2-5/2) = 41% (602)
= 13. m7

lo o,

= BS (De 10m,
toys V1S0 (He) = 1832, Ys
Ke amas): 508 0% (690)
= 2978 ma

[Ue dos Retos
= AU =2100rg0, can
[o OCT = 188.0 0%

= GS DER) = 848.2% (61D
bel = Bie Sina?

NT

=24

Bl 12% Cua 3G 251

Cos 23 Curtin range)

L2@-Eends Sas
SAR

as wer Bug

1409-27 6410 = 181.19
lox Ba (a I”
i

= 2.315 lun range)

9, 180-20 Sa) 162.07

[1-9] 1240 3809 = LO
B=468) -21(2:19) = 224.33

[EU

244 Caux LAB + Vo

_fB=4G)- 27 (Bed = 214.94

RE, À CEST

ts BHA QR ICH

Ve
3 28.224 ui rang |

e 1D- ee my

=25, 807 (oithin rango)
Dy=120-2sis* Ear 143. Y!

EUT 10hp+ 35 Drgm > 3V belt
one possible design :
ve di:25 6,27

10. tea LAS = 39.3
try CE Sin Sri ya
Le AT CS) + Que
MUSA

Use ndo Thay

BeACD 25 (25+10.D) = 201.49

a BUA rent 3204-25)
WG

= ABLA

(9,2 35509) = 371.1

22323 USA

25 (887400) = 9.80, use Dy? 1D.)

VEN GHA As A)= MA 1 |

N12] 25hp4 Asp > SV

1-3] 5hpa Drm > BV keit [HAT 10hp + 20007pm-> SV tt

si
I

TAS] Ihpt Dion > SVB [IL] 2hp 1 2ddrpm> SV bar

©

im

los WOUYad) = 12.84 MY

Dat Tin (896A) = 20.088 in

Nex (18. nam: au
29441 Kms

vx kon veu

NE] cs Matos I PE
RA ES re an Las) = 83 Lam ep)

NI Lot 23.09 09%
De SAin (PA) =3.037 15
Ms (23.0% & De 34 aa x (à
0 mot

LS ai Fe colon

j (tee) wo, Be bo,
= EE (ae 1.47 0 WY
axe HT) 18.84 44
= Yan (BA = EC
Y (1.8.0 = 31.14% (2/0)

= 40517 Mn
Us manval rae

IN do, Nun

= FE (es)= 160 opm, cw,
25 yn ts

ne 2500): 26.18 "Ys

Das 129/5:(180/50) = 30,25 1

Me BA) = 288.0% (98)
= 197

ini
je ot ar NA

pea] lem YA) “0
va Batty

= Æfro- QD + —

Let —

(1-22.
D,= ER) LOW /
de m

I fro trad} EN]

RS
B= 180-200" > Wey

By sores Ga) 2

ac

= BIG
UBUD. bep
al spy
a CAMA .
ANRT ES |

Waals nal "
Dessen "33957 Dee Nana
Í 3 : =
© A Ba De y RA
C= any a x L-15 fren- Ge,
i
an | | f20- Eo att GEN 3 Seat: TS |
a } 2 52424
ma nz | Or wa sy
| ; Ev) Be 25 [REAR | us)
N-2S| 90 he + Hail ii
EE A
One fan désun:
Neu
Ne SD ÓN = LOS 2 OR

©

o

Be AE [00.88
del» 385%
us Wis
ea sae ED 5 _
ENG Di eme
1 and - ana
ve eM lt
ut thn
E]

ANN

(1241

120hga rpm? No HO cha

11-28 |50hp+ Om» No 100 chain

8 hp à Dey” No. LD chain

11301 10hp4-425rpnw1> No ED chain

Answers to the Chapter 11 Case Study Quest

Case 1-1,

I. As sprocket A drives clockwise, sprocket B is driven clockwise.

2. As sprocket A drives clockwise, he instantaneous motion of pin C (which is attached
to the chain) is moving left and upward toward sprocket A.

3. As sprocket A drives clockwise, he instantaneous motion of yoke D (which is
‘constrained to horizontal sliding) is toward the left at constant velocity.

4. Inroughly 1/2 revolution, the portion of the chain that contains pin C will engage
with sprocket A.

5. As the portion ofthe chain hat contains pin C engages on sprocket A, rod E will
decelerate

6. AS the portion of the chain that contains pin C moves onto the top of sprocket A, rod
E will change directions then accelerate toward the right. Upon further rotation and
disengagement of the portion of chain that contains pin C, rod E will move toward the
right with constant velocity.

7. The mechanism creates reciprocating, constant velocity, motion of rod E.

Case 11-2.

1. As handle H rotates, shaft [rotates with the handle,

2. As handle H rotates, he right half sheave rotates threading itself onto (or off the left
half

3. As handle H rotates, two halfsheaves are brought either together or apar.

4. Item J is a key and transfers rotational power from the sheave to shaft A.

5. tem guides shaft.

6. Item G isa spring, which keeps engagement of shaft I with half-sheave C.

7. This devise isa variable radius sheave, commonly used in CVTs (continuously
variable transmissions).

Case 11-3.

1. As tab B is forced upward ino lever C, item D is forced downward,

2. As tab Bis forced upward into lever C, item D will move downward into a slot
integral with sheave G, The resulting action is that sheave G will no longer be able to
rotate.

3. As tab B is forced upward and sheave G is no longer abe to rotate, the paint shaking.
‘machine will stop operation.

4. The purpose of this device is stop operation of the machine when the door is raised.

5. Sheave E has many notches for more immediate response to opening the door,
stopping the shaking machine more quickly.

6. Spring His a return spring to keep D in an upward position until forced downward,

7. This mechanism is a safety device.

e E

12-1 | Ya-20 > p=dy= .05m

AN A

et
Ale

tan he .O1<.2

Breads are self lodeing

[122] 4280 p=7g 0887

= tar KOST .
it) Aree pe
tan =.05 4.2

Ehreods are self locking

1273| Mlbx2.0 > P= Zn

COS

tan 2=.093 4.2
Birds One self-locking

ANR Sp EDR

tar aus

tan A=-0644 2.2
threads are self - looking,

eS) Ao > e357 .0Si0
ARE Ne p AB=()(05 Mere)
215i

[FeblACME 2-4 ph 25m

AR= Wip AB= (OCASO
=25 “Y

121] Arme 1-9%p=¥=.20in
AR Ne pb (MO
=2Sù 4

MST HN >p=2=.0 Tn
Amr NEDP ia > EYbre)

= Ure’
ARENepAB= OTAN
=A in

12-9] Ame 10 © pe Lie
= BREN PB GER Or)
= Zin

[12-10] Acme Yo-1D > p=45= in
AR D (mes rel

Ray bAB2i0 À
12-11] Acme J2-10 => Pty,

30ce

Are Ne PAB = Na
= 3dın

A Ryan: 2.750 de

Na] 2-0 > pr Blin

[ANT CET OA)

Lin

Reken: 2 Sin ANZ

N

1213| 94-10 » p= Je = Due
AR GYCAMAL Brae „Fin

Raden? Luzern IT

RAT 344-10 person
Rus Ls) + 2 Sin

Aute: ZT,

Abend = lotir 2283"

MAS] 94-10 psdozonin
BEN =; 13

Actor » LIE, saw

an Harpe QE
AR = (NON YS re)» 38 Tin

OS
BR]

12-07-19 > p
FAR: ONL NS

Fa

[218 TAcmE Five hr Sn

Vars Ne po NS Yo Ya

= 10% EUR
NES ”

N

JA] ACME 1-5 > pr$=.201n

Ve Ne pw
= (20/40 )(200 m)
= 240'nm (RE)
= 4 Mer

Vins baton = 41Ys À

|
12201 = LDO rpm

Bun: (DO) = 12D 09

Nbr PBUNC p> À 3.01
Vases Na ps
= OS OS]
= 4.23 Yan (LE)

= ASA Mec À

12-22]

3-10» p= 15>

Major (INEA)
Inia

A |

10 ph in
Zee
Vals Yer Vo Vert re Ve Vers Varo.
Nee" eee Yet Seemed?
Ve 1925072 À MET Yan AQIS?
12-23) 12-24

(dar (RO) = 240rgm
ey
Avs:

P= 152.0164 in
Ne DA" PNL
0307 Mu + AA“

12:25 AUME 2-43 p= ay =RSm fe eurem: 15» -3=20 in
5% “bron Gd = “Le =
22D ie nella: Wer
pe ©- a IV Le: Go- Ach 228.51 Yoo?

NE [rt NA on Vee)

AR a À Conste vel) cna Rare dir as vel
ea de 6
on 1200cpm

=

(2-29 Acme 2x10

F mE 0 ‘J

= 24.0 in LA

OL
4 306

12-30

ack xl (si)! a) A A)
EN mn ga

re een Nowy

= Be Roberts 1
TO

=.259 = Wey
ISS) we vce sag. bs E ICA cee ea
tanker Se few E ut ong

EEE nn,

PS A 248 oy
We HI 7118 Ay

E EN
ALAN

EN ña EN

44: a
BT Dao om

À Lo Fume MUT
A ee ee"

a (tes 30.15 (07
Semen) 245

we-10 pen
Tube we 20 p 2.08

=24,5%,
12-35 136
An Sat (LL) Bis
Sur Henn
Sat SE Lata Baro e OTe
Thnod B ve MID x 150 ar vs M108 180
The ue Mido 1.00 Trad Ce Mbs —
237
Sra > (LL) Bruns
Bes Late
Tiresa D

Chapter 13 |

I

À

BT
hore: 160 - 140¢0s 25 +33," = By
100 + HD si 253 159,28 Ry
PR RedRe*Ry MZA
Lo ate) 1627

13-2
Morte: 10-190 coslS= 100.8" By
vert: rie 226 A8 Ry
y RER = 208.38
H a: tas (RQ) = bb.0°

E RL art ree
33 EN as
TOP 160-140 eos 105= Nr Re
Vert: 1004 Ds 106 + =By A MA

1D BRE ES
Ba tas (By) = SD"

= 200i ows

ai Re 306.3" £501"
[13-5] Ber EN EU

ral TR, Le Y _
TT

:

[KM re > en Pp

e
DEMO (ei an RÔ1S - wold
ee hero 5

We 3132104 Compression

cr PI

‘Dama=o:
xo] rode = BC eos (i) + Ta 20
To Tye + 28020 À me
= 29.0 Nm Y

GS Br ER]
0 0: Ñ E DEMO
: Bean
el“ oe sti sdb ne
Py fotos’ (WA) soa CR
E > A (eee
ae (adi rita
a ATACA Op un
Sa [Es RER EU = a =
a ann D se
oe een
gas) ans a
vr va ut Damen er
Dinos as f ad io ~~ Said
Midas “ÉD do ter
= AS
See Ea tar
al es Tes
C js colon Beant (ng
wren PET BU Se tye Gena
fy soe Fe am
nl CUS fea weet
= er.
= a
% ern
sé ” ES

Ses O)
SANS

ROSES

Bus BED ler en by
Er ASS Genser)

por dard Me Resinthse0
PATTES des 3

EN

Damgeo:
Wale -0
Tee BA int ew

Chapter 14 |

Wenger nee v

a od ana

N FR
run az

DO EE We th SH
[Bis 0% yr

ua

[43] T= mits ge BAT mE
LS 1) i ds
Rox 024 loft EIERN
20.24 Les mg = 135000 kq ma = 0,135 at
[AT re mr“
RE EN

2328000 la mas 8125 kam
ke (eee. Bs Som = Sk nny

(Te Emer = gn

En DNS LAS

À
Lin (Gr SI

| EICHE

1,99 te &

MA

Ten
O
> 085 th vw st ENS

Ty Tare 0 08S+

ben

DL

Ahlers Ga] 08 kan?
Tes Temas 089 GU

= Die ka my

132 Vo in ss
[EE

wel Va ESS

as E
sp po
ese (13)

Mao = 08 la

DES
AA

IS
+ mont - into", BES 918]

=.000133 tb LA

JNE

le IT za

HS a wk ABD
Ma pa Vas: EAN
\ a all

245,
soa LOGE (193.289 = COOL oo

ern] uns
Hanan GS] 682107 Mb me

Lol +000 + Sees: N

HRS OS CL
DH nl ET

ETS
is
— fes SR T7
o
ap ES
> ea STAR BS

ne LE

¡Es From CAB

NEE

an HZ”
ld Bar
Reiko ma

ri Ti
A y

Seen Cd
Nas TP
Vos 118.0% —

qu Ls 128078 Sis"
Get GaAs 5H pa

& Sa nv Zur
aE ag PA Op,

om CAD
AS —

hans Rand à Na EU) oy ñ
5 issus LE Rte
ES à run aa -ageo
Eng SUS NEAR IS +
ES Be $ > Y: 148,30
NEN E Nind> ©
A The 211300 ls ES ¡EA Y
Op o nn Es woe Se
Ms mam» RUES pe Gay, 2 sine ur
ao
08 = (185000) 8150" 287

Com CAB
a gt WG
Fe mela sake
ental O et
nee RESTO)
uo = 23 be
> Re: Al

EMO
ONE

D

Ay

Tr ASA à lb 4

= dede Sie Od,

CA

E 4 E
Gant Ob + 9h78 ody Eu

fon CAD
AS
lp 95176 VER
VE 1ER
AE (57

38% BAY

DE = 02 e, as
dd m cart SE

=
A Os LS: page VS
R E Y

5

CRE

Using FRD'S Bom Melk
KERN, R

NAN

Guanes

105.38,

a i ee iy
ER hemos so
¿a Soe
peal as, eae em $ ad e

A

Tay 17.81 NY

LA

MAT Using analysis From IL, witht Je a=
PBT Vers ane fe tow
> Candy 1074 OF

se

Fe ea.

Ding FED'S from Walk:

WEN, Fag? EU N

IT ET RTS
Grat e dh,

QE 9 0 wa