Magma y los procesos magmaticos 2022.ppt

851 views 45 slides Jan 24, 2024
Slide 1
Slide 1 of 45
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45

About This Presentation

Tipo de magma y los procesos magmaticos


Slide Content

Magma y procesos
magmáticos.
PROF. OLGA ORTEGA
2022

Ambiente magmático
El ambiente magmático incluye
todos los procesos de la fundición y cristalización de rocas y
minerales en la naturaleza.
Diferenciación:formación de magmas parciales de distintas
composiciones.
Fraccionamiento:separación de los minerales cristalizados del
magma restante por gravitación, por ejemplo.
Además, hay que tomar en cuenta los ambientes relacionados a
los procesos magmáticos como la actuación de los fluidos
acuosos

Magma y los procesos magmáticos
El magma es un sistema multicomponente de sustancias bajo la
forma líquida, sólida y gaseosa .
Es una mezcla de silicatos fundidos a temperaturas entre 600°C y
mayor de 1 000°C.
Cuantitativamentelos elementos más importantes son: Oxígeno,
silicio, aluminio, calcio, magnesio, hierro, sodio y potasio.
Se originan por fusión parcial de la roca en la corteza terrestre
(litósfera)y/o interior del manto superior (astenósfera).

Magma y los procesos magmáticos
El magma es una mezcla de silicatos fundidos a temperaturas
entre 600°C y mayor de 1 000°C.
Cuantitativamente los elementos más importantes son:
Oxígeno, silicio, aluminio, calcio, magnesio, hierro, sodio y
potasio.
A través de una erupción volcánica asciende hasta la superficie
terrestre.
Esproductodeladinámicadeplacas.
Elmagmatismoesunodelosquehandadoformaalatierra.

Magma y los procesos magmáticos
El estado sólido, líquido y gaseoso, es debido a la temperatura
del magma, que esta por encima de los puntos de fusión de
determinados componentes.
El punto de fusión del magma se ubica en profundidades entre
100 y 200 Km.
A alta presión las temperaturas de cristalización de los minerales
son altas.
Una disminución de la presión tiene una disminución en la
temperatura de fusión o cristalización de los minerales.
Puede originarse de la fusión de rocas de diferente composición
química (granítica y basáltica)o de una solución homogénea que se
separa por un proceso llamado diferenciación magmática, el cual
explicaría la formación de los distintos tipos de rocas ígneas.

Origen de los magmas
Posiblemente se puede originar el magma de una de las tres
formas:
1.A partir de alguna zona cuyo estado líquido primitivo ha sido
heredado de un periodo remoto de la historia de la tierra.
2.Fusión parcial o completa de una roca sólida pre-existente.
3.Por modificación de un magma pre-existente por Ejem. Por
diferenciación o contaminación.
Para que se origine la fusión de rocas debe producirse,
-una pérdida de presión;
-un cambio en la composición de la rocao,
-un incremento sustancial en la temperatura.

Movimientos del magma
Al ser más ligero y más móvil que la roca sólida el magma
tiende a elevarse en la corteza de la tierra forzado por la
presión excesivamente grande de las rocas circundantes.
Cuando llega a profundidades someras donde pueden existir
extensas fracturas en las rocas adyacentes, el magma comienza
a moverse con más facilidad.

Durante la presencia
del magma se puede
definir varios procesos
físicos y químicos
internos en la cámara
de magma, procesos
relacionados a la
fundición de la roca,
procesos relacionadas
a la migración del
magma y finalmente
procesos durante la
cristalización. la
interacción del magma
con la roca de caja y
fluidos de la roca de
caja son otro factor de
no menor importancia.
La figura muestra
algunos procesos
durante el ascenso de
la cámara magmática

La figura muestra algunos procesos durante
el ascenso de la cámara magmática.
En todas formas el magma cambia considerablemente su
composición inicial a un magma más rica en silicatos entre otros.
Fenómenos como asimilación,contaminacion, mingling y mixing.
De acuerdo del modelo Mash el limite inferior de la corteza
podría provocar una detención del cuerpo magmático en conjunto
con procesos de asimilación y refundición de rocas de mayores
cantidades de silicatos.
De toda manera, en 10 kilómetros de profundidad se detiene la
cámara magmática y si el campo tectónico lo permite, se pueden
generar cuerpos hipabisales que llegan hacia la superficie:
El proceso se concluye marcada por una actividad volcánica

MAGMA Y LOS PROCESOS MAGMATICOS
La Viscosidad
Depende:
Delacomposición;cuantomásácidoesmásviscoso.
Delatemperatura:amayortemperaturamenorviscosidad.
DelContenidodemineralesdisueltos:amayorcontenidomayor
viscosidad.
Delosgases:cuantomenorseaelcontenidodegasesmayorserála
viscosidady,
Delapresión:aldisminuirlapresión,losgasesseescapanyla
viscosidadaumenta.
Loscristalesformadoresdelmagmapreviasalenfriamientose
encuentransuspendidosenlamezclafundida.

FACTORES QUE DETERMINAN LA VISCOSIDAD DEL
MAGMA
1. CONTENIDO DE SILICE.
Magmas con una concentración de SiO2 entre 45-50 % presentan baja
viscosidad; es decir, fluyen con facilidad (típico de magmas de
composición máfica).
Magmas con una concentración de SiO2 de alrededor de 70 % son muy
viscosos o fluyen con gran dificultad (típico de magmas de
composición félsica).
Esto se debe a que la mayor cantidad de sílice promueve reacciones de
polimerización que hacen al magma mas viscoso.
2. TEMPERATURA MAGMATICA .Un aumento de la temperatura
conduce generalmente a una disminución de la viscosidad de un magma;
es decir, una mayor fluidez. Interior de la corteza terrestre la Tº del
magma basáltico es inferior a 1000ºC y la Tº de los magmas silíceos es de
600ºC a 700ºC.

Las Tº de 700ºC a 1100ºCcorresponderían a los magmas
graníticosaturado de agua y las Tº más altas corresponderían
a los andesíticos piroxénicosy a los basálticos.
3. VOLATILES.Un aumento del contenido de volátiles
(gases disueltos) produce una disminución de la viscosidad
de un magma, aunque un aumento notable de esta fracción
conduce por lo general a erupciones explosivas.
Son sustancias químicas líquidas y gaseosas que mantienen
el estado líquido o gaseoso a una Tº baja que la de los
silicatos. Entre ellos tenemos; el agua como gas disuelto,
CO2, S2, N2, Ar, Cl2, F2, y H2.
Depende del contenido de sílice y en volátiles.
FACTORES QUE DETERMINAN LA VISCOSIDAD DEL
MAGMA

Composición de los magmas: Fases
1.-FASE LIQUIDA,Silicatos fundidos
(SiO4)-4, (AlO5)-5,cationes libres de
Ca+2, Mg+2, Fe+2, K+, Na+, etccon
proporciones variables de cationes de Mg,
Te, Na, K.
2.-FASE SOLIDA,formados por cristales
de Olivino, Piroxeno, Plagioclasa, etc.o
fragmentos de rocas.
3.-FASE GASEOSA,formado por
componentes volátiles: vapor de agua,
dióxido de carbono, ácidos clorhídrico,
bórico y sulfhídrico,entre oros.
La fase líquida de los magmas depende de su
proporción en silicatos, que son los
componentes más importantes de las rocas
que integran la corteza terrestre.

Clasificación de magmas
Según su origen
Para clasificar los magmas se emplean diferentes criterios,
siendo el más habitual el que los diferencia según su origen
en:
•Magmas primarios.Son los magmas formados directamente
por fusión de las rocas de la corteza o del manto.
•Magmas derivados.Son los que resultan de la evolución
(cambios) de los magmas primarios.

Clasificación de magmas
Según Cantidad de Sílice
Podemos clasificar los magmas primarios atendiendo a la cantidad de
sílice en:
•Magma ácido o félsico.Es un magma que presenta un alto contenido
en sílice (entre un 60 y 77%). Es rico en iones de sodio y potasio. Es un
magma viscoso que suele consolidar en el interior de la corteza
formando granito y riolita. Está asociado a las zonas de subducción.
•Magma intermedio.Es un magma que posee entre el 50 y 60% de
sílice. Es menos viscoso que el magma félsico. Sus lavas originan rocas
como la andesita. Si cristaliza en el interior de la litosfera forma diorita.
•Magma básico o máfico.Es el magma que posee menor proporción de
sílice (menos del 50%). Son ricos en iones de calcio y magnesio. Es un
magma fluido que se localiza en las zonas de dorsal y forma rocas como
el basalto y el gabro.

Clasificación de magmas
Según su composición(geoquímica)
Magma toleítico.Se genera en las dorsales oceánicas a poca profundidad (15-30
km de profundidad)(Dorsál Basáltica Medio Oceánica –MORB «Mid Ocean
Ridge Basalt) como consecuencia de la fusión parcial de las peridotitas del manto.
El magma llega a las capas superficiales rápidamente, por lo que no hay tiempo
para su evolución o diferenciación. Forma basaltos toleíticos y gabros. El
porcentaje en sílice (SiO2) en este tipo de magma es del 50%.
•Magma Alcalino.Es un magma rico en metales alcalinos, especialmente sodio y
potasio que se genera a partir de la fusión parcial de peridotitas en zonas
profundas. Suele aparecer en ambientes de rift continental y puntos calientes a una
profundidad de entre 30 y 70 Km. El ascenso de los magmas desde la profundidad
en la que se generan proporciona el tiempo necesario para que se produzca su
diferenciación. Origina basaltos alcalinos, traquitas, riolitas entre otras rocas. Su
porcentaje en sílice es menor del 45%.
•Magma Calcoalcalino.Se forma por fusión a gran profundidad (100 a 150 km) de
la corteza oceánica subducida. Son magmas que no ascienden a la superficie por
regla general debido a la profundidad en la que se forman, existiendo bastante
tiempo para su diferenciación. Este magma origina andesitas, riolitas, dioritas y
granitos. Su composición en sílice es del 60%.

1. MAGMAS TOLEITICOS
Los magmas toleíticos se fraccionan produciendo
◦Basaltos Toleíticos,
◦Andesitas Basálticas
◦y raramente Riolitas.
. Químicamente los basaltos Toleíticostienen 53%
SiO2.
. Bajas concentraciones de potasioy asociados a algunos
elementos incompatibles como
◦Bario, estroncio,
◦rubidio, cesio,
◦zircón plomo, torio y uranio.

Las Rocas Toleiticas
Estas rocas se derivaron de magmas toleíticos,a profundidades entre 80
y120 Kilómetros.
Ocurren como lavas Basálticas ;
-En los centros de expansión oceánica o dorsales y,
-en los arcos insulares.

2. MAGMAS CALCOALCALINAS
Los magmas calco alcalinos se originaron:
1. en las zonas de subducción ,
2. por fusión parcial durante el descenso de la placa y
subsecuente reacción entre los magmas silíceos y el manto
sobreyacente, y
3. seguido por cristalización fraccionada en niveles
hipabisales de la corteza terrestre.

Las Rocas Calco alcalinas
Ocurren:
1.En las zonas deSubducción.
2.En losArcos magmáticosde losarcos insularesmaduros.
3. En losMárgenes continentales.
Las rocas calco alcalinas están representadas por:
A.Las rocasPlutónicasdesde el Gabrohasta el Granito,pasando por la
Granodiorita y Diorita y,
B.Las rocas Volcánicas, en losArcos Insulares, siendolaAndesita de dos
piroxenos(59% SiO2, K ) y elementos como:rubidio, estroncio, bario,
zircón yuranio.
C. Las rocasmás Silíceas, enlosMárgenes Continentales, como; la
Dacita y Riolitas (61 –62% SiO2), concentraciones deK y elementos como
; rubidio, estroncio, bario, zircón, torio, uranio,etc.,

3. MAGMAS ALCALINOS
Los magmas alcalinos se fraccionan en;
1. Rocas shoshoníticas en las zonas orogénicas,
2. sienitas e ijolitas en las zonas cratónicas,
3. Químicamente bajos en SiO2 (44 a 47%
4. Alto contenido de alcalis (Na2O y K2O),
5. rocas peralcalinas en zonas cratónicas: Kimberlitas y
carbonatitas.

Las rocas alcalinas
Las rocas alcalinas ocurren :
1. en las zonas de Rift intracontinentales,
2. En las fallas de transformación y,
3. en los trasarcos magmáticos de los márgenes
continentales.

Factores de la Evolución Magmática
Toda las rocas ígneas se originan de un magma basálticoprimario,el cual, al
evolucionar, se va convirtiendo cada vez en un magma ácido o silíceohasta llegar
al granito.
En otras palabras, la composición de los magmas primariosfinalmente se modifica
para producir una gran variedad de rocas, desde el gabrohasta el granito.
Por lo cual se conciben actualmente tres fenómenos:
1.-Diferenciación Magmática:
a). Migración de iones, consecuencia del gradiente geotérmico de Tº.
b). Transferencia gaseosa, ascenso de burbujas colectan y transportan los constituyentes
volátiles del magma de un lugar a otro.
c). Fusión homogénea,se dividen en dos o más fracciones inmiscibles para el caso de
formación de sulfuros.

Factores de la Evolución Magmática
2.-Cristalización Fraccionada,significa una precipitación de cristales en el
magma por efecto de la gravedad. Esto implica que los cristales de mayor
densidad se irán a las partes más bajas de la masa fundida residual y pueden
volverse a fundir.
3.-La asimilación o digestión y la mezcla de magmas,el magma es
modificado y contaminado por la asimilación (incorporación y fusión), de
rocas de caja, es capaz de incorporar rocas extrañas a su composición,
disolviéndolas en su contactos e incorporarlos a sus sustancias durante su
recorrido, observándose rocas englobadas a modo de enclaves o xenolitos.
El magma sólo puede fundir los minerales con temperaturas de fusión o
cristalización menores, en comparación con la Tº del magma. Ejemplo, un
magma de composición andesíticano es capaz de asimilar los minerales de
olivino y anortita de Tºf más altas.

Mezcla de Magmas
Las rocas híbridas, particularmente las volcánicas e
intrusivas someras, también pueden producirse por la mezcla
de magmas parcialmente cristalizados.
◦Por ejemplo: ciertas tobas en el Perú consisten
principalmente de pequeñas partículas de vidrio cuyos
índices de refracción, notablemente diferentes, indican una
amplia variación en la composición.

Magmas Primarios
Un magma primario es una enorme magma no contaminada
que existe en el principio de un ciclo petrogénico y que en
determinado tiempo pueden dar origen a varios productos
derivados.
Se consideran dos grandes familias de magmas
primarios:
◦Magma basáltico
◦Magma granítico.

Magma Basáltico
Se forman en las zonas continentales
◦Losmagmas basálticossurgen de la fusión
de rocas ultrabásicas, aunque su composición
cambia según la zona en la que se forman.
◦Si se producen en dorsales oceánicas poseen un bajo contenido en
sílice (-50%) y si se producen en el interior de placas tectónicas
son más alcalinos y ricos en sodio y potasio
También llamados magmas máficos
Contienen 50% de SiO2
Rango de temperatura de 900 a 1200ºC
Producen familia de rocas gabro-basalto

Magma Granítico
Se forman en las zonas de subducción de la corteza oceánica
con las placas continentales.
Estemagmatiene el punto más bajo de fusión y puede cristalizar en
grandes rocas plutónicas.
Se forman en zonas orogénicas al igual que los andesíticos, pero a
partir demagmasandesíticos o basálticos que consiguen atravesar y
fundir rocas sedimentarias o rocas ígneas de la corteza.
También conocido como magma silíceo
Contienen 56-75% de SiO2
Rango de temperatura bajo 850ºC
Produce rocas de la familia granito-riolita

Magmas andesíticos y Calcoalcalinos
Los magmas andesíticos se forman en zonas de subducción, tanto
de la corteza continental como oceánica, y tienen hasta un 60% de
contenido ensílice y minerales hidratados, como anfíboles o
biotitas.
El magma andesítico es el más rico en agua, pero al erupcionar se
evapora en forma de vapor.
Cuando este magma cristaliza en profundidad forma la diorita y el
agua pasa a formar parte de anfíboles.
CalcoalcalinosSonmagmasque no ascienden a la superficie por
regla general debido a la profundidad en la que se forman, existiendo
bastante tiempo para su diferenciación.
Estemagmaorigina andesitas, riolitas, dioritas y granitos.
Su composición en sílice es del 60%

Serie de Reacciones de Bowen
N.L. Bowen(1922) descubrió que los silicatos se pueden
ordenar en dos series de cristalización .
La series de reacciones de Bowen , significa el orden que
suelen seguir los minerales en la cristalización magmática a
partir de un magma basáltico.
Se establece dos tipos dos tipos de reacciones: Continua y
Discontinua,es decir, que cada uno de los minerales que
integran las dos series de cristalización se deriva del mineral
precedente, como resultado de una reacción química con el
líquedo remanente del magma.

Serie de Reacciones de Bowen
1.-Serie de Reacción Discontinua,es el cambio brusco en la
composición química y estructura cristalina y todo los minerales son de
color oscuro, por tener cada nuevo ferromagnesiano una estructura
cristalina diferente del mineral precedente.
En esta serie el olivino es el primero en formarse; se compone de
tetraedros individuales unidos por iones positivos de hierro y magnesio.
Luego se forman piroxeno alrededor de cadenas individuales de
tetraedros; el anfibolde cadenas dobles y la biotita alrededor de
láminas de tetraedros.

Serie de Reacciones de Bowen
2.-Serie de reacción Continua,es el cambio gradual de la
composición química que mantiene constante la estructura
cristalina , así como los minerales son de colores claros.
Entre losfeldespatos, el primero en formarse es la
anortita,este mineral cristaliza aproximadamente a la
misma Tº del olivino.La anortitaen el líquido remanente
del magma, asimila gradualmente cantidades cada vez
mayores de sodio; finalmente, cuando todo el calcio
característico de la anortita ha sido reemplazado por sodio,
el mineral resultante es la albita.

Serie de Cristalización de Bowen

Serie de Cristalización de Bowen
Según el principio de Bowen se puede explicar lo
siguiente:
A). La diferencia en algunas masas ígneas, cuya
BASEes rica en OLIVINO y en el TOPErica en
SILICE.
B). el porqué las primeras erupciones de un
volcán sonBASICASy las últimas son ACIDAS.
C). Obtener a partir de magmas BASICOS, rocas
cada vez más SILICEAS,hasta llegar a una roca de
composición GRANITICA(ACIDA).

Etapas en la Consolidación del Magma
1.-Etapa Ortomagmática:(900-600ºC)durante la cual son
formados únicamente los minerales pirogenéticos.Llamado
también periodo de cristalización, durante el cual se desarrollan
minerales hidroxílicos debajo contenido de agua.
2.-Etapa Pegmatítica: ( 600-800ºC),durante gran parte de la cual
coexisten las fases líquidas (fusión de silicatos), cristalina y gaseosa
(acuosos). Cristalizan grandes cantidades de silicatos con elementos
raros y no compatibles tales como Berilo, Boro, Niobioy otros.
3.-Etapa Pneumatolítica:(400-600ºC)existe un equilibrio entre
cristales y gases.

Etapas en la Consolidación del Magma
4.-Etapa Hidrotermal:(100-400ºC)se mantiene un equilibrio
entre cristales, soluciones acuosas y gases acuosos.
Juega un papel importante en la formación de yacimientos
minerales, éste sistema depende mucho de la temperatura y
presión.
La materia residual final del magma es una solución acuosa rica
en Sílice, en estado líquido a Tº bajas y forman filones rocosos.
Esta fase hidroterrmal puede dividirse en :
a.-Katatermal. (400 –300ºC).
b.-Mesotermal. (300 –200ºC)
c.-Epitermal. (200 –100ºC).
5.-Etapa Teletermal. (< 100ºC ).

Origen de Rocas Ígneas
Se forman por el enfriamiento y consolidación del magma.
La mayoría de las rocas volcánicas provienen de magmas
que fueron líquidos en su mayor parte.
Algunas parecen que han sido formadas por la intrusión de
material rocoso móvil, del cual una parte muy pequeña era
líquida en el momento del emplazamiento.
Se concluye que las rocas volcánicas y la mayoría de las
plutónicas se originan de dos magmas primarios diferentes,
aun cuando la variación en su composición es casi la misma.

Composicionmineralogicade las rocas igneas
Dentro de los componentes de las rocas ígneas, destacan los silicatos,
los cuales estan representados en los siguientes grupos:
1. Los feldespatos.Son de composición silicoalumínicos, y pueden
ser de Na y K. Los minerales representativos son: la ortoclasa, la
microclina, la plagiclasa sódica, la plagiclasa cálcica, la sanidina, etc.
2. Los feldespatoides.Contienen los mismos elementos que los
feldespatos, es deficiente en sílice nunca estan asociados con cuarzo
primario. Los minerales representativos son: la nefelina, la leucita,
melilita, calcofilita, calsilita, sodalita, etc.
3. El olivino.Su composición varía desde la forsterita, olivino,
tefroita, la larsenita (PbZnSiO2) , la fayalita etc.
4. Los piroxenos.Son los minerales en los que predominan
elementos como el Ca, Mg, Fe y Al. Los minerales representativos
son: enstatita, hiperstena, diópsido, augita, hedenbergita, jadeita, etc.

Composicionmineralogicade las rocas igneas
5. Los anfíboles.Tienen la misma composición química de lso
piroxenos y sálo difieren en las propiedades físicas y ópticas. Los
minerales representativos son: tremolita, actinolita, hornblenda,
galucófano, antofilita, etc.
6. Las micas.Son minerales silicoalumínicos, con cristalización
laminar hexagonal. Los minerales representativos son: biotita (mica
negra), muscovita (mica blanca), flogopita (mica roja), lepidolita , etc.
7. La sílice.Es otro grupo de minerales muy importante en la
formación de las rocas ígneas. La ílice se presenta en la naturaleza
bajo cinco minerales distintas: cuarzo, calcedonia, ópalo, tridimita, y
cristobalita.

Clasificación química de las rocas ígneas
1. Contenido de Sílice.Esta basado en función del contenido de
sílice. De acuerdo a esta baselas rocas ígneasse clasifican en:
a) Acidas : SiO2 mayor de 66%.
b) Intermedias : Sio2 de 52 a 66%.
c) Básicas : SiO2 de 45 a 52%.
d) Ultrabásicas : SiO2 menor de 45%.
Esta terminología viene del hecho de que el SiO2 forma un ácido cuando se
disuelve en el agua (el SiO2 tiene muy baja solubilidad y forma un ácido muy
débil). Muchos geólogos piensan que los términos ácidos y básicosno son
correctos; se prefiere el uso de los félsicos,intermedio, máficos y ultramáficos
para los cuatro grupos dados.

Clasificación química de las rocas ígneas
2. Saturación de Sílice. S.J.Shand dividió los minerales de las rocas ígneas en
dos grupos: a) Minerales saturados, aquellos que pueden coexistir con el cuarzo,
el feldespato, piroxeno, piroxeno, anfibol, mica, ilmenita, etc.
3. Saturación de Alúmina.. Esta clasificación de saturación involucra a la
alúmina Al2O3 y la abundancia relativa a K2O, Na2O y CaO.Se propuso cuatro
grupos de rocas ígneas en términos de saturación de alúmina:
a) Rocas Peraluminoso.Cuando la alúmina (Al2O3) es mayor que Na2O +
K2Oy contienen minerales como: la muscovita, biotita, topacio, turmalina o
granate Fe-Mn y andalusita.
b) Rocas meta-alumínicas. La alúmina es mayor que Na2O + K2O,pero
menor que CaO + Na2O + K2O, contiene minerales como la biotita y
hornblenda; la norma contiene anortita.

Clasificación química de las rocas ígneas
c) Rocas subalumínicas.La alúmina (Al2O3) es igual Na2O + K2O;estas
rocas contienen minerales no aluminosos como olivino,hiperstena y la
normacontiene minerales bajos en aluminio.
d) Rocas peralcalinas.La alúmina (Al2O3) es menor que Na2O + K2O,
ocurren minerales como: la egerina y riebeckita; la norma contiene
minerales como la acmita.
4. Index Alcalis-Oxido de Calcio.Es la clasificación propuesta por
Peacock basados en porcentaje de peso de Si2O, a partir del cual propone
cuatro subdivisiones:
a) Cálcicas : Si2O mayor de 62%.
b) Calco-alcalinas : Si2O de 56 a 62%.
c) Alcalino-cálcico: Si2O de 51 a 56%.
d) Alcalino : Si2O menor de 51%.

Asociaciones o Familias de Rocas Ígneas
Una amplia región se llama Provincia Petrográfica, si las rocas
ígneas que contiene son aproximadamente de la misma edad y
si han sido derivadas del mismo magma paterno.
Desde el punto de vista de la química,las series de rocas
ígneas se dividen en cuatro grupos:
◦Cálcica.
◦Calci -alcalina.
◦Alcalina-calcica.
◦Alcalina.
Tags