Magnitude comparator

9,381 views 18 slides Apr 02, 2019
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

PPTs on magnitude comarator


Slide Content

SYED HASAN SAEED
[email protected]
https://shasansaeed.yolasite.com
1
SyedHasan Saeed, Integral University,
Lucknow

MAGNITUDE COMPARATOR
Syed Hasan Saeed, Integral University,
Lucknow
2

MAGNITUDE COMPARATOR: DIGITAL COMPARATOR
•It is a combinational logic circuit.
•Digital Comparator is used to compare the value of two binary
digits.
•There are two types of digital comparator (i) Identity Comparator
(ii) Magnitude Comparator.
•IDENTITY COMPARATOR: This comparator has only one output
terminal for when A=B, either A=B=1 (High) or A=B=0 (Low)
•MAGNITUDE COMPARATOR: This Comparator has three output
terminals namely A>B, A=B, A<B. Depending on the result of
comparison, one of these output will be high (1)
•Block Diagram of Magnitude Comparator is shown in Fig. 1
Syed Hasan Saeed, Integral University,
Lucknow
3

BLOCK DIAGRAM OF MAGNITUDE COMPARATOR
Syed Hasan Saeed, Integral University,
Lucknow
4
n-Bit Digital Comparator
A
n-Bit
B
n-Bit
A<B A=B A>B
Fig. 1

1-Bit Magnitude Comparator:
•This magnitude comparator has two inputs A and B and three
outputs A<B, A=B and A>B.
•This magnitude comparator compares the two numbers of single
bits.
•Truth Table of 1-Bit Comparator
Syed Hasan Saeed, Integral University,
Lucknow
5
INPUTS OUTPUTS
A B Y
1(A<B)Y
2 (A=B)Y
3(A>B)
0 0 0 1 0
0 1 1 0 0
1 0 0 0 1
1 1 0 1 0

K-Maps For All Three Outputs :
Syed Hasan Saeed, Integral University,
Lucknow
6
A
B
01
0
1
0
0 0
1B B A A BAY
1
K-Map for Y
1 : A<B

K-Maps For All Three Outputs :
Syed Hasan Saeed, Integral University,
Lucknow
7
A
B
01
0
1
0
0 0
1B B A A BAY
1
K-Map for Y
1 : A<B
A
B
01
0
1
1
0 1
0B B A A ABBAY
2 
K-Map for Y
2: A=B

K-Maps For All Three Outputs :
Syed Hasan Saeed, Integral University,
Lucknow
8
A
B
01
0
1
0
0 0
1B B A A BAY
1
K-Map for Y
1 : A<B
A
B
01
0
1
1
0 1
0B B A A ABBAY
2 
K-Map for Y
2: A=B
A 01
0
1
0
1
0B B A A B
0BAY
3

K-Map for Y
2: A>B

Realization of One Bit Comparator
Syed Hasan Saeed, Integral University,
Lucknow
9BA
BAY
1 
A
BAB B A ABB AY
2  BA Y
3
 BA BA BAY
1 ABBAY
2  BAY
3

Realization of by Using AND , EX-NOR gates
Syed Hasan Saeed, Integral University,
Lucknow
10BA
BAY
1  BA
BAY
2

 BA Y
3
 BA
A
B

2-Bit Comparator:
•Acomparatorwhichisusedtocomparetwobinarynumberseachoftwo
bitsiscalleda2-bitmagnitudecomparator.
•Fig.2showstheblockdiagramof2-Bitmagnitudecomparator.
•Ithasfourinputsandthreeoutputs.
•InputsareA
0,A
1,B
0andB
1andOutputsareY
1,Y
2andY
3
Syed Hasan Saeed, Integral University,
Lucknow
11
A
0
A
1
B
1
B
0
Y
1
Y
2
Y
3
2-Bit Comparator
Fig. 2
A
B
Input Output

GREATER THAN (A>B)
LESS THAN (A<B)
Similarly,
1. If A
1= B
1=1 and A
0= 0, B
0=1, then A<B
2. If A
1= B
1= 0 and A
0= 0, B
0=1 then A<B
Syed Hasan Saeed, Integral University,
Lucknow
12
A
1 A
0 B
1 B
0
1 0 0 1
1 1 1 0
0 1 0 0
1.If A
1= 1 and B
1= 0 then A>B
2.If A
1and B
1are same, i.eA
1=B
1=1 or A
1=B
1=0 and A
0=1, B
0=0
then A>B

INPUT OUTPUT
A
1 A
0 B
1 B
0 Y
1=A<BY
2=(A=B)Y
3=A>B
0 0 0 0 0 1 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 1 0 0
0 1 1 1 1 0 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 1 0 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 1 0
Syed Hasan Saeed, Integral University,
Lucknow
13
TRUTH TABLE

K-Map for A<B: K-Map for A=B:
Syed Hasan Saeed, Integral University,
Lucknow
14
0 1 1 1
0 0 1 1
0 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
00 01
00
01
11
10
11 10 00 01 11 10
00
01
11
10
A
1A
0
A
1A
0
B
1B
0
B
1B
0
For A<B
For A=B010110011
B B A B A B A AY  01010101010101012
B B A A BBAA B B A A B B A AY 

K-Map For A>B
Syed Hasan Saeed, Integral University,
Lucknow
15
0 0 0 0
1 0 0 0
1 1 0 1
1 1 0 0
00 01 11 10
00
01
11
10
A
1A
0
B
1B
0001110103
B AA B A B B A Y 

For A=B From K-Map
Syed Hasan Saeed, Integral University,
Lucknow
1601010101010101012
B B A A BBAA B B A A B B A AY  )B (A )B A(Y
)BA B A( )BA B A(Y
)BA B A(BA )BA B A(B AY
00112
000011112
1111001111002




LOGIC DIAGRAM OF 2-BIT COMPARATOR:
Syed Hasan Saeed, Integral University,
Lucknow
17
A
1
A
0B
1B
0
A< B
A=B
A > B001
B A A 11B A 010
B B A 11B A 001
B A A 010
B B A 11B A 00
B A

THANK YOU
Syed Hasan Saeed, Integral University,
Lucknow
18
Tags