Manual de practicas de Electrónica de potencia

santiagopabloalberto 1,023 views 28 slides Nov 20, 2020
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

Electrónica de potencia


Slide Content

INTRODUCCIÓN

El manual de prácticas para la materia de Electrónica de Potencia
pretende ser un material de apoyo para los estudiantes que cursan la materia
de manera que complementen los conocimientos teóricos adquiridos en el aula
con la comprobación real de un circui to de aplicación.

La materia consta de cinco unidades. En las unidades I y II el alumno
identificará y conocerá los principales dispositivos de potencia así como los
circuitos de disparo usados para dispararlos. La mayor parte de las prácticas
propuestas se enfocan en este objetivo ya qu e esto es de vital importancia para
que posteriormente en las unidades siguientes se apliquen estos conocimientos
en el diseño e implementación de circuitos más complejos.

En la unidad III, el alumno conocerá el funciona miento de los
rectificadores controlados, tanto monofásicos como trifásicos, de media onda y
onda completa. En esta unidad se propone el diseño por parte del alumno de
un rectificador monofásico completo de onda completa y en base este diseño
calcular los principales parámetros de funcionamiento.

En la unidad IV, el objetivo es que el alumno conozca las principales
configuraciones de troceadores, su funcionamiento y aplicaciones. En esta
unidad de propone el diseño de un troceador tipo elevador para que, en base a
ello se calculen sus principales parámetros de funcionamiento.

Por último, en la unidad V el alumno conocerá el funcionamiento de los
inversores y cicloconvertidores. En esta unidad se propone el diseño de un
inversor de 12Vcd a 120Vca y compro bar su funcionamiento con diferentes
cargas.

PRÁCTIC A No. 1
CAR ACTERÍSTIC AS DEL SCR

OBJETIVOS:
a) Identificar las terminales de un SCR utilizando un multímetro digital y
comprobar su funcionamiento.
b) Medir parámetros como: VGT, IGT e IH de un SCR activado por
compuerta.

INTRODUCCIÓN:
Un SCR es un interruptor semiconductor que cuando se enciende
permite que fluya una corriente a través de él en una sola dirección mediante la
aplicación de un voltaje polarizado de ánodo a cátodo. Comúnmente el SCR se
dispara por medio de la aplicación de un voltaje positivo en la compuerta y se
a paga reduciendo el voltaje ánodo cátodo por debajo de un valor requerido
para mantener el valor mínimo de corriente de ánodo llamado corriente de
mantenimiento IH.

El SCR se utiliza prin cipalmente en el control de energía de CA y CD.
Como semiconductor es un dispositivo compacto herméticamente y libre de
efectos de vibración. Como rectificador sabemos que conduce en una sola
dirección, pero su operación es más compleja que la de un diodo. Como
interruptor de enganche el SCR ofrece ventajas sobre los transi stores de
potencia ya que no es necesaria la aplicación de una señal continua para
activarse.

Los niveles de corriente que manejan los SCR van desde ¼ Arms hasta
2000 Arms y voltajes de hasta 5000 V. Niveles más altos de corriente y voltaje
son manejados por conexiones serie - paralelo de SCR´s.

M ATERI AL Y EQUIPO :
· 2 Fuentes de poder (0 - 20Vcd).
· 2 Multímetros digitales.
· 2 Miliamperímetros (pueden usar los de la mesa de trabajo)
· 1 SCR C106B1.
· 1 Protoboard.
· 1 Diodo 1N4004 o similar.
· 1 Potenciómetro de 1K Ω .
· 5 Resistencia s (10K Ω a 1W , 270 Ω a 2W , 1k Ω a 1W , 1k Ω a 2W )
· 2 Resistencias 100 Ω a 1W
· 1 Interruptor PNBC (normalmente cerrado)

DES ARROLLO :
I. - Identificación de las terminales de un SCR:
1. Coloque el mult ímetro en la posición de diodo, busque la combinación de
terminales donde exista una unión PN, una vez localizadas estas terminales
tenemos que la punta negra está en el cátodo y la roja está en la compuerta. La
tercera terminal debe ser el ánodo. Dibuje u n esquema de la distribución de
terminales en el dispositivo.

2. Ahora coloque la punta roja en el ánodo y mantenga la negra en el cátodo.
Haga un pequeño corto momentáneo entre ánodo y compuerta. ¿Qué indica el
multímetro? ______________________ ________________________________
_______________________________________________________________
¿Qué significa esto?_______________________________________________
_______________________________________________________________

II. - Funcionamiento del SCR y medición de la IH :
1. Arme el circuito de la Figura No. 1.
2. Ajuste E1 a 10Vcd. Aumente lentamente E2 en tanto observa A2, hasta que
la aguja brinque repentinamente. Tome las siguientes lecturas:
A1= _____________ A2= ___________ VR2= ___________

3. Reduzca E2 a 0Vcd. Observe A1 y A2. ¿Qué ocurrió? __________________
_______________________________________________________________
_______________________________________________________________
4. Con E2 en 0Vcd tome las lecturas de VR2 y VAK.
VR2= ______ _________ VAK= _______________
5. Presione SW 1 y observe A1 y A2. ¿Qué ocurrió? ______________________
_______________________________________________________________
6. Tome nuevamente las lecturas de VR2 y VAK:
VR2= _____________ VAK= _______________
7. Ajuste E1 a 15Vcd.
8. Aumente lentamente E2 sin dejar de observar A2, hasta que la aguja salte
repentinamente. Registre las siguientes lecturas:
A1= ________ A2= _________ VR2= __________

9. Mida el voltaje ánodo cátodo del SCR:
VAK= ___________

10. Reduzc a E2 a 0Vcd y presione momentáneamente SW 1.
11. Ajuste E1 a 5Vcd.
12. Aumente lentamente E2, observando A2 hasta que la aguja de un salto
repentino. Registre las siguientes lecturas:
A1= _________ A2= _________ VR2= _________
13. Mida el voltaje ánodo cátod o del SCR:
VAK= __________
14. Reduzca E2 a 0Vcd y a continuación disminuya lentamente E1 a oVcd , sin
dejar de observar A1 y A2. ¿Qué ocurre? ______________________________
_______________________________________________________________
_____________________ __________________________________________

15. ¿Qué representa el último valor observado en A2 antes de que el SCR se
apague? ________________________________________________________
_______________________________________________________________
16. Registr e el último valor observado:
A2= __________

III. - Medición de IGT y VGT para un SCR:
1. Arme el circuito de la figura No. 2.
2. Coloque R2 a resistencia máxima en el circuito de compuerta y verifique que
el SCR esté apagado (V1 debe medir 6Vcd).
3. Varíe lentamente R2 hasta que V1 cambie de 6Vcd hasta aproximadamente
1Vcd, en ese momento el SCR estará activado.
4. Desactive el SCR y repita el paso anterior, pero observando los valores de
VGT e IG un momento antes de la caída de V1. Registre estos val ores y con
ellos calcule IGT de acuerdo a la siguiente fórmula:


VGT= _________ ___ IGT= _____________

NOTA: IGT puede resultar ser una cantidad negativa (la corriente de disparo
fluye de la compuerta)

5. Compare con la hoja de datos del fabricante y concluya.

CIRCUITOS UTILIZADOS:


Figura No 1 Circuito de prueba para un SCR

Figura No. 2 Medición de VGT e IGT

OBSERV ACIONES Y CONCLUSIONES:

PRÁCTIC A No. 2
EL TRIAC Y EL DIAC

OBJETIVOS:
a) Mostrar la conducción bidireccional y los cuatro modos de disparo del
TRIAC.
b) Mostrar el funcionamiento bidireccional del DIAC.

INTRODUCCIÓN:
El TRIAC es un semiconductor interruptor tríodo de c.a. Opera co mo dos
SCR conectados en paralelo inverso. Por tanto, puede conducir con cualquier
polaridad de voltaje entre sus terminales principales y se puede disparar con
cualquier polaridad de señal en la compuerta.

Sus electrodos son denominados MT1, MT2 y G ya q ue como la
conducción es bidireccional sería inapropiado nombrar sus terminales
principales como ánodo y cátodo. Por lo general MT1 es la terminal de
referencia de medición pues la que interactúa con la compuerta.

El TRIAC tiene cuatro modos posibles de disparo que son (con respecto a
MT1): MT2 positiva, G positiva ; MT2 positiva, G negativa ; MT2 negativa, G
positiva ; MT2 negativa, G negativa .

A veces se expresan los cuatro modos de disparo del TRIAC con respecto
a su curva característica V - I, en la cual, sólo se muestra la conducción en el
primer y tercer cuadrante.

Por otro lado, el DIAC es un diodo interruptor de ca de tres capas que se
utiliza principalmente como elemento de disparo para el TRIAC. Opera como
dos diodos montados en paralelo inverso por lo que es bidireccional. Su
conducción se inicia hasta que se alcanza el el V
BO
en cualquier dirección, en
ese momento la corriente aumenta y disminuye el voltaje entre terminales.

M ATERI AL Y EQUIPO
· 1 Fuente de cd (que alcance 4 0 V)
· 1 Fuente de ca aislada de tierra (Variac)
· 1 Multímetro digital
· 1 Osciloscopio
· 1 TRIAC SC136B o reemplazo
· 1 DIAC
· 2 Resistencias (47 Ω y 10K Ω ) una de cada valor
· 1 Capacitor (0.1µF)
· 1 Lámpara miniatura 6.3V
· 1 PNBO (Interruptor normalmente abierto)
· 1 SPST (Interruptor 1 polo 1 tiro)
· 1 Protoboard

DES ARROLLO :
I. Operación bidireccional del TRIAC
1. Arme el circuito de la figura No. 1

2. Ajuste el voltaje de la terminal principal a 6.3 Vcd
3. Ajuste el voltaje de compuerta a 6Vcd
4. Oprima y retenga S
1
. ¿Qué ocurre? ________________________
_______________________________________________________
5. Libere S
1
. ¿Qué ocurre? _________________________________
_______________________________________________________
6. Explique el comportamiento a nterior ._______________________
_______________________________________________________
_______________________________________________________
7. Conecte el osciloscopio a través de DS1 (carga) mientras oprime
y retiene nuevamente S1. Dibuje la forma de onda dibujada a
escala.



8. Explique el resultado obtenido en el paso anterior. ____________
_______________________________________________________
_______________________________________________________

II. Cuatro modos de disparo del TRIAC:
1. Arme le circuito de la figura No. 2.
2. Ajuste las fuentes de la terminal principal y de la compuerta a
6Vcd
3. Cierre S
2
y oprima momentáneamente S1. ¿Qué ocurre? ______
_______________________________________________________
4. Registre en la tabla 1 el modo de d isparo, el cuadrante y las
características observadas en la lámpara.
5. Abra S
2
. ¿Qué ocurre? __________________________________
6. Elimine la fuente de compuerta y luego in vierta su polaridad para
conectarla nuevamente al circuito.
7. Cierre S
2
y oprima momentáneamente S
1
. ¿Qué ocurre? _______
_______________________________________________________
8. Registre en la tabla el modo de disparo, el cuadrante y las
características observadas en la lámpara.
9. Abra S
2
. ¿Qué ocurre? ___________________________ _______
10. Elimine el voltaje de la terminal principal e invierta la polaridad
para conectarla nuevamente al circuito.
11. Cierre S
2
y oprima momentáneamente S
1
. ¿Qué ocurre? _______
_______________________________________________________
12. Registre en la tabla el m odo de disparo, el cuadrante y las
características observadas en la lámpara.
13. Abra S
2
. ¿Qué ocurre? _________________________________
14. Elimine la fuente de compuerta y luego in vierta su polaridad para
conectarla nuevamente al circuito.
15. Cierre S
2
y oprima momentáneamente S
1
. ¿Qué ocurre? _______
_______________________________________________________
16. Registre en la tabla el modo de disparo, el cuadrante y las
características observadas en la lámpara.
17. Abra S
2
. ¿Qué ocurre? ___________________________ _______

CU ADR ANTE MODO OPERACIÓN
POLARID AD DE
LAS TERMIN ALES
CAR ACTERÍSTIC AS











III. Operación bidireccional del DIAC:
1. Arme el circuito de la figura N o. 3
2. Ajuste la fuente a 40 Vcd y co necte el osciloscopio entre
terminales principales del DIAC.
3. Dibuje la forma de onda a escala, indicando su amplitud máxima y
la frecuencia correspondiente.



4. ¿Qué representa la medición de la amplitud máxima de la señal
anterior ? _________________________ ____________________
_______________________________________________________
5. Elimine la fuente del circuito e in vierta su polaridad para
posteriormente conectarla nuevamente.
6. Dibuje a escala la forma de onda desplegada en el osciloscopio
indicando su ampli tud máxima y la frecuencia correspondiente.



7. ¿Qué diferencia tiene la forma de onda con la observada en el
paso 3? ______________________________________________
_______________________________________________________
8. ¿Qué representa la medición de la amplitud máxima de la señal
anterior? _____________________________________________
_______________________________________________________
9. Compare la amplitud máxima de la señal desplegada en ambos
casos y concluya. ______ ________________________________
_______________________________________________________
_______________________________________________________

CIRCUITOS UTILIZADOS :

Figura No. 1. Conducción del TRIAC

Figura No. 2. Modos de disparo del TRIAC



Figura No. 3. Conducción del DIAC

OBSERV ACIONES Y CONCLUSIONES:

PRÁCTIC A No. 3
RELEV ADOR DE ESTADO SÓLIDO

OBJETIVOS:
a) Construcción de un relevador de estado sólido en tablilla de circuito
impreso.
b) Implementación de un circuito de aplicación para un relevador de estado
sólido.

INTRODUCCIÓN:
Un relevador de estado sólido, como su nombre lo indica, es un
dispositivo que utiliza un interruptor de estado sólido (por ejemplo: un transistor
o tir istor), en lugar de contactos mecánicos (como los de los relevadores
normales), para conmutar cargas de potencia a partir de señales de control de
bajo nivel. Estas últimas pueden provenir, por ejemplo, de circuitos digitales y
estar dirigidas a motores, l ámparas, solenoides, calefactores, etc. El
aislamiento entre el circuito de control y la etapa de potencia lo proporciona
generalmente un optoacoplador. La conmutación propiamente dicha puede ser
realizada por transistores bipolares, MOSFETs de potencia, T RIACs, SCRs,
etc. Un relevador de estado sólido ofrece varias ventajas notables respecto a
los tradicionales relevadores y contactores electromecánicos: son más rápidos,
silenciosos, livianos y confiables, no se desgastan, son inmunes a los choques
y a las vibraciones, pueden conmutar altas corrientes y altos voltajes, sin
producir arcos ni ionizar el aire circundante, generan muy poca interferencia,
proporcionan varios kilovoltios de aislamiento entre la entrada y la salida, etc.

M ATERI AL Y EQUIPO
· 1 Fuente dual de voltaje
· 1 Fuente de voltaje (0 - 30 Vcd)
· 8 Resistencias (R1=330 Ω , R2=270 Ω , R3 y R5=2.2K Ω , R4=220 Ω , R6=
10K Ω , R7=39 Ω , R8= 4.7K Ω )
· 1 Potenciómetro ( R9 = 10K )
· R10 – Termistor (Utilice el que proporciona el laboratorio de electrónica)
· 2 Capacitores ( C1, C2 = 0.01 µF )
· 1 Diodo Zener ( D1 =15V a 0.5W )
· 3 Diodos Rectificadores1N4004 ( D2, D4, D5 )
· 1I ndicador LED (D3)
· DS1, foco de 40W
· Q1, transistor 2N3904
· U1, optoacoplador, MOC3 010
· U2, amplificador operacional LM741
· Q2, TRIAC Q4015L5, 400V/16 A
· F1, fusible 10 A

DES ARROLLO :
I. Construcción de un relevador de estado sólido:
1. Arme el circuito de la Figura No. 1 en una tablilla de circuito impreso.
Procure usar contactos firmes tanto en las terminales de entrada y salida
(por ejemplo, contactos para bananas). Una ve z terminada la tablilla se

debe presentar levantada con espaciadores adecuados para que la
soldadura no toque abajo (puede usar tornillos con tuercas como
espaciadores). La soldadura debe ser firme y no presentar falsos
contactos.
2. Una vez terminada la tablilla, tome una fuente de cd y conéctela en las
terminales de entrada en serie con un miliamperímetro, mientras que en
las de salida conecte un foco d e 40w conectado a la línea de ca.
3. ¿Cuál es el rango de voltaje y corriente de entrada de cd necesario para
que el relevador funcione?___________________ __________________
4. Explique brevemente el funcionamiento del circuito armado incluyendo la
función que d esempeña cada elemento importante que
contiene.____________________ _______________________________
__________________________________________________________
__________________________________________________________
_________________________________________ _________________
__________________________________________ ________________

II. Circuito de aplicación del relevador de estado sólido
5. Con el circuito anteriormente armado proceda a conectarlo
adecuadamente en el circuito de la figura No. 2.
6. Arme un divisor de voltaje con R8 y R9. Con el potenciómetro de este
divisor elija un voltaje de referencia de aproximadamente 5Vcd.
7. Acerque un cautín previamente calentado al termistor, mientras
monitorea el voltaje a través del mismo.
8. ¿En qué nivel de v oltaje a través del termistor enciende el foco?_ ______
9. Explique este comportamiento.__________ _______________________
__________________________________________________________
_______________________________________ ___________________
10. Disminuya el voltaje de referencia a 3 Vcd.
11. Repita el paso 4 y explique el resultado obtenido._ __________________
__________________________________________________________
__________________________________________________________
______________________________ ____________________________
12. ¿Cómo esta funcionando el amplificador operacional en este caso? _ ___
__________________________________________________________
______________________________________ ____________________

CIRCUITOS UTILIZADOS :


Figura N o. 1. Diagrama de un Relevador de Estado Sólido

Figura N o. 2. Circuito de aplicación de un relevador de estado sólido.

OBSERV ACIONES Y CONC LUSIONES:

PRACTIC A No. 4
EL TRANSISTOR DE UNIJUNTUR A (UJT).

OBJETIVOS:
a) M edir la resistencia intrabase y determinar las características de la unión
PN emisor - base1 de un UJT,
b) Determinar la relaci ón de inactividad intrínseca y el voltaje máximo de
disparo (Vp) de un UJT.

INTRODUCCIÓN:
El transistor de unijuntura tiene una sola uni ón PN semejante a un diodo,
pero diferente de éste porque en el UJT el material n es una pieza de silicio con
un contacto ohmico en cada extremo. Estos dos contactos se denominan Base
1 y Base 2. Para formar el emisor el materi al P de la unión se une con un
alambre de aluminio a la pieza de silicio.











EST RUCT URA FÍSICA SÍMBOLO

En el circuito equivalente del UJT r
B1
y r
B2
representan la resistencia
ohmica de la pieza de silicio entre B1 y B2 a cada lado de la unión PN. La
resistencia total entre las dos bases r
BB
es la resistencia intrabase. El diodo que
se muestra representa la unión PN del UJT.


CIRCUIT O EQUIVALENT E

Para que el UJT funcione como transistor, es necesario aplicar un voltaje
positivo a la terminal de emisor. Sin embargo para que conduzca corriente de
emisor es necesario vencer la polaridad inversa creada en r
B1
, cuando se aplica
un voltaje positivo entre ambas bases, así como la caída del diodo. Este nivel
es llamado voltaje de pico (Vp). Cuando VE alcanza Vp el diodo se polariza
directamente y el UJT se dispara.

Los UJT no se utilizan como ampli ficadores, se utilizan principalmente en
circuitos de tiempo, disparo, detección y generación de ondas. Pueden
controlar retrasos exactos, pulsos de tiempo, ondas de diente de sierra y
transiciones de onda cuadrada.

M ATERI AL Y EQUIPO :
· 1 Fuente de c. d.
· 1 Multímetro
· 1 Protoboard
· 1 Capacitor de 0.22µF
· 1 Capacitor de 0.1µ F
· 1 Diodo de silício 1N4004
· 1 UJT 2N2646
· 1 Resistencia de 1K Ω
· 1 Resistencia de 100 Ω
· 1 Resistencia de 10K Ω
· 1 Potenciómetro de 10K Ω

DES ARROLLO:
I. - Identificaci ón de terminales.

1. Tome el UJT y con un multímetro ajustado en la posición de diodo coloque la
punta positiva en una de las terminales cercanas a la muesca del dispositivo y
la negra en cualquiera de las otras dos hasta que mida aproximadamente una
caída de diodo. Cuando se logre esto se ha identificado el emisor y la Base 1.
La terminal restante es la Base 2, la cual, debe ser común con el cuerpo del
dispositivo. Dibuje la ubicación de los pines del UJT.

2. Coloque el multímetro en la posición de 20K Ω y mida la resistencia entre
base 1 y base 2 con el emisor abierto. Registre la lectura.
R
BB
= _________
3. ¿Qué pasa con la lectura anterior si invierte las puntas del multímetro ?
_______________________________________________________________
_______________________________________________________________
4. Proceda a medir la resistencia directa entre el emiso r y base1 colocando la
punta roja del multímetro en el emisor y la negra en la base1. Registre su
lectura
R
EB1
=________
5. ¿Qué pasa con la lectura anterior si invierte las puntas del multímetro ? _____
______________________________________________________ _________
6. Comparando r
BB
con r
EB1
, ¿Qué concluye del comportamiento del UJT ?
_______________________________________________________________
_______________________________________________________________

II. Medición de la razón de inactividad intrínseca:
1. Arme el circuito de la figura No. 1.
2. Ajuste Vs a 10Vcd. Mida y registre el voltaje a través de C1.
V
C1
=________
3. ¿Qué representa esta lectura para el UJT ? ___________________________
4. Mida el vo ltaje entre Base2 y Base1 y registre su valor.
V
B2B1
= ________
5. Con los valores anteriores calcule la razón de inactividad intrínseca
considerando el efecto del diodo CR1 en el circuito.
h =_________

III. Medición del volt aje de pico (Vp):
1. Arme el circuito de la figura No. 2
2. Ajuste Vs a 10Vcd y el potenciómetro a resistencia minima.
3. Aumente lentamente R4 mientras observa el vol taje de emisor a tierra en el
vó lmetro conectado en el circuito. ¿Qué sucede con la indicación del vó lmetro ?
_______________________________________________________________
4. ¿ Que represent a la lectura máxima que registr ó el vó lmetro? _____________
5. ¿ Que provoca la disminución repentina en el volta je de emisor regist rada en
el vó lmetro? _____________________________________________________
6. Regrese el potenciómetro a resistencia minima y repita el paso 3 hasta
obtener una medición mas exacta de Vp. Registre su valor.
Vp = _________
7. Compare Vp con V
C1
registrada en el experimento anterior. ¿Concuerdan los
resultados ? ______________________________________________________
8. Explique cualquier discrepancia. ___________________________________
_______________________________________________________________
_______________ ________________________________________________
9. ¿Qué efecto tendría en Vp un valor mayor de h ? ______________________
10. ¿ Y un mayor valor en V
B2B1
? _____________________________________


OBSERV ACIONES Y CONCLUSIONES:

CIRCUITOS UTILIZADOS:

PRACTIC A No. 5
OSCILADOR DE RELAJ ACION UJT

OBJETIVOS :
a) Mostrar la operación y determinar la frecuencia de un oscilador de
relajación con UJT.
b) Determi nar el efecto de un cambio de los componentes sobre la
frecuencia de oscilación de un oscilador de relajación con UJT.
c) Mostrar la operación de un generador de onda cuadrada con UJT.

INTRODUCCION :
Un oscilador de relajación a menu do se utiliza para generar una onda no
sinusoidal, tal como una onda cuadrada, una onda triangular o un diente de
sierra. El oscilador contiene un componente no lineal (transistor) que descarga
periódicamente la energía almacenada en un condensador o un in ductor ,
causando cambios bruscos en la forma de onda de salida.

Los oscilador es de relajación y los generadores de onda cuadrada se
pued en utilizar para proporcionar un a señal de reloj para circuitos secuenciales
de lógica , tales como los relojes y los m uestreadores , aunque a menudo se
prefieren osciladores de cristal por su mayor estabilidad.

L os osciladores de relajación de onda triangular o de diente de sierra se
utilizan en los circuitos síncronos que generan las señales horizontales de
desvió para t ubos catódicos en osciloscopios y televisores análogos. En los
generadores de función, esta onda triangular entonces puede ser adicional
formada por una aproximación cercana de una onda de seno. El multivibrador
es otro tipo de oscilador de relajación.

M ATERI AL Y EQUIPO
· 1 Fuente de CD.
· 1 Multimetro
· 1 Protoboard
· 1 Osciloscopio
· 3 Capacitores(C1=0.22µF, C2 = 25µF y C3 =0.022µF)
· 1 Diodo de silicio 1N4004(CR1)
· 1 UJT 2N2646(Q1)
· 7 Resistencia (R1=10K Ω , R2=1K Ω , R3=47 Ω , R4 =100K Ω
,R5=1M Ω ,R 6=22 K Ω Y R7=47 K Ω )

DES ARROLLO :
I. Oscilador de relajación
1. Arme el circuito de la figura No. 1.
2. Ajuste VBB a 12 VCD y observe la forma de onda a través de C1 en el
osciloscopio. ¿Que tipo de onda se despliega y cual es su amplitud? ___
_____________________________________________________________
3. Mida y registre el periodo de la onda desplegada en el osciloscopio
(mida entre dos picos sucesivos de la onda ). Calcule también la
frecuencia .
T =_________ f =_________

4. Observe la f orma de onda desplegada en la resistencia de la base 1.
¿Que tipo de onda se despliega y cual es su amplitud? ______________
_____________________________________________________________
5. Observe la forma de onda registrada entre base 2 y tierra .Descríbala.
_____________________________________________________________
_____________________________________________________________
6. Dibuje a escala las tres forma s de onda anteriores.
7. Calcule el periodo del oscilador de relajación de acuerdo a la formula
teórica y compare con los pasos registrados en el pas o tres.
¿Concuerdan? ______________________________________________
_____________________________________________________________
_____________________________________________________________
8. Disminuya VBB a 11 VCD y observe nuevamente la forma de onda a
través de C1 midiendo el periodo de la señal y calculando la frecuencia.
T =_________ f =_________
9. Disminuya VBB a 10 VCD y observe nuevamente la forma de onda a
través de C1 midiendo el periodo de la señal y ca lculando la frecuencia.
T =_________ f =_________
10. ¿Que concluye de los dos resultados anteriores?
_____________________________________________________________
_____________________________________________________________
11. Elimine momentáneamente VBB del circuito y reemplace la R1=10K Ω
por una R4=100 K Ω .
12. Conecte nuevamente VBB =12 VCD. Observe nuevamente la señal a
través de C1 midiendo su periodo y calculando la frecuencia.
T =_________ f =_________
13. Elimine momentáneamen te VBB del circuito y reemplace la R4=100K Ω
por R5=1M Ω
14. Conecte nuevamente VBB =12 VCD. Observe nuevamente la señal a
través de C1 midiendo su periodo y calculando la frecuencia.
T =_________ f =_________
15. Elimine momentáneamente VBB del circuito y reemplace la R5 =1 M por
la R1=10K Ω . Quite e l capacitor C1 =0.22 F y en su lugar conecte el
capacitor electrolítico C2=25 µ F, asegurándose de colocarlo con la
polaridad correcta.
16. Conecte nuevamente VBB=12VCD.Obser ve la señal a través de de C2
midiendo su periodo y calculando la frecuencia.
T =_________ f =_________
17. De acuerdo a los resultados anteriores. ¿Que sucede al aumentar el
valor de la resistencia en el emisor en el circuito?
_____________________________ ________________________________
18. ¿Y al aumentar el capacitor de emisor?
_____________________________________________________________
_____________________________________________________________

II. Generador de onda cuadrada con UJT:
1. Arme el circuito de la figura No. 2.

2. Ajuste el VBB a 10 VCD mientras observa las formas de onda en la
base 2, el emisor y atreves de C3. Dibújelas a escala indi cando para
cada una su amplitud , frecuencia y periodo.
Vmax Vmin VP T Frec.
C3
B2
EMISOR
3. De acuerdo al tipo de circuito. ¿Cual señal representa su salida?
_____________________________________________________________
4. Explique el funcionamiento del circuito.
_______________________________________________________________
___ ____________________________________________________________
_______________________________________________________________
_______________________________________________________________


OBSERV ACIONES Y CONCLUSIONES :



CIRCUITOS UTILIZADOS:


Figura No. 1
Figura No. 2
Oscilado r de relajación con UJT Gen erador de onda cuadrada con UJT

PRACTIC A No. 6
CONTROL DE POTENCIA DE C A CON SCR.

OBJETIVOS:
a) Comprobar el funcionamiento de un circuito resistivo de control de
compuerta para un SCR.
b) Comprobar el funcionamiento de una red RC de control de compuerta
para un SCR.
c) D iseño de un circuito de control de fase para un SCR utilizando una red
RC doble en el control de compuerta.

INTRODUCCIÓN :
La potencia que se entrega a una carga se puede controlar con un SCR
que conduce durante un semiciclo de la señal de entrada.
Co ntrol de fase significa controlar la fase de disparo respecto a la del
voltaje de ánodo, limitando con ello el tiempo de conducción del SCR.
El ángulo de conducción para un SCR es el tiempo en grados eléctricos
que conduce el dispositivo y que entrega pote ncia a la carga.
El retardo de fase es el tiempo en grados eléctricos que se retrasa el
tiempo de compuerta con respecto al voltaje de ánodo.
Si se suministran los voltajes de compuerta y carga desde una misma
fuente de CA, se puede ajustar el tiempo de co nducción de un SCR,
controlando la amplitud relativa del voltaje de disparo de compuerta con
respecto al voltaje de carga. Mientras el SCR conduce se entrega corriente a la
carga y se suministra la potencia promedio requerida para la carga. Cuando el
SCR s e apaga en el semiciclo negativo de la fuente de CA, se interrumpe el
flujo de corriente y no se desarrolla voltaje a través de la carga.
Dado que la potencia se promedia en un ciclo completo, la fuente debe
desarrollar suficiente potencia durante el tiemp o de encendido del SCR para
funcionar adecuadamente a la carga hasta el siguiente pulso. Generalmente el
voltaje de disparo se ajusta de manera que se pueda variar el ángulo de
conducción para satisfacer los requerimientos de la carga.

M ATERI AL Y EQUIPO:
· 1 Fuente de CA aislada de tierra o transf ormador de 110Vrms a 6.3V rms
· 1 Multímetro
· 1 Protoboard
· 1 Osciloscopio
· 1 Capacitor, C1 = 0.22 µF.
· 2 Diodos de silicio 1N4004 (CR1 Y CR2)
· 1 Lámpara miniatura 6.3V (DS1)
· 1 SCR C106B (Q1)
· 1 Potenciômetro (R1= 50K Ω )
· 2 Res istencias (R2 = 1K Ω y R3 =100 Ω @ 1W
· 1 Interruptor SPST (S1).

DES ARROLLO:
I. Circuito resistivo de control de compuerta.
1. Arme e l circuito de l a figura No. 1

2. Ajuste la fuente a 6.3Vca, el potenciómetro R1 a su valor mínimo y cierre
el interruptor S1. ¿Qué ocurre? ________________________________
3. Coloque el osciloscopio a través de la carga y observe la forma de onda
desplegada. Dibújela a escala.




4. Aumente le ntamente R1 mientras sigue observando la forma de onda en
la carga. Describa lo que sucede con la se ñal._____________________
____ _________________________________________________________
_____________________________________________________________
_____________________________________________________________
5. De acuerdo a lo expuesto anteriormente conteste lo siguiente :

Angulo de con ducción (Min) ___ _ ____ __
Angulo de conducción (Max) __ _ _ ___
Angulo de retardo de disparo (Min) _________
Angulo de retardo de disparo (Max) ___ __ _ ___

6. ¿Cuál es el rango de control del ángulo de retardo de disparo para este
circuito? __________________ _________________________________

II. Red RC de control de compuerta:
7. Arme e l circuito de l a figura No. 2.
8. Ajuste la fuente a 6.3Vca, el potenciómetro R1 para minima resistencia y
cierre el interruptor S1. ¿Qué ocurre? ___________________________
9. Observe la f orma de onda a través de la carga utilizando el osciloscopio.
Dibújela a escala:




10. Aumente lentamente R1 hasta su resistencia máxima sin dejar de
observar la forma de onda desplegada en el osciloscopio. Describa lo
que ocurre con la se ñal : ______________________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________
___________________________________________ _______________
11. De acuerdo a lo expuesto anteriormente conteste lo siguiente:

Angulo de conducción (Min) ___ ___ ____
Angulo de conducción (Max) __ _ ____ _ __
Angulo de retardo de disparo (Min) ___ __ ___
Angulo de retardo de disparo (Max) ___ ____ _ _

12. ¿Cuál es el rango de control del ángulo de retardo de disparo para este
circuito?___________________________________________________

III. Diseño de una red RC doble de control de compuerta.
13. Utilizando valores de capacitores comerciales y un voltaje de entrad a de
120Vrms a 60Hz. Diseñe una red RC doble de control de compuerta
para un SCR que tenga un amplio rango de control del ángulo de
retardo de disparo. La carga puede ser un foco de 40W . Se deben
cumplir las siguientes condiciones:
a) Diseñar y comprobar el funcionamiento utilizando el osciloscopio a
través de la carga con una punta atenuada para observar el rango de
control.
b) Si el circuito diseñado no tiene el amplio rango de control hacer los
ajustes prácticos necesarios hasta lograrlo.
c) Dibujar a escala la forma de onda para el mínimo y el máximo ángulo
de retardo y establecer el rango para el que se pudo ajustar el
circuito.

CIRCUITOS UTILIZADOS:


Fig. 1 Circuito resistivo de control de compuer ta.


Fig. 2 Red RC de control de compuerta:

OBSERV ACIONES Y CONCLUSIONES:


PRACTIC A No. 7 .

CIRCUITO S DE DISPARO UJT - SCR EN C.D. Y C. A.

OBJETIVOS:
a) Comprobar el funcionamiento de un circuito de atraso UJT - SCR.
b) Calcular y medir el período de un circuito de atraso UJT - SCR.
c) Diseño de un circuito de disparo UJT - SCR sincronizado por línea.

INTRODUCCIÓN:
En muchas aplicaciones industriales, a veces es necesario retrasar la
aplicación de la potencia a una carga o quitar la potencia de un período determinado
de tiempo, esto se logra con un dispositivo de control operado con un circuito de
retraso de tiempo. El SCR es ideal para realizar esta oper ación, pero es necesario
agregarle un circuito de disparo de compuerta con un retraso. El oscilador de
relajación con UJT puede servir adecuadamente para dar el retraso deseado y dar el
suf iciente voltaje de disparo para el SCR.
Los UJT son casi ideales c omo dispositivos de disparo para SCR,
particularmente aquellos que usan realimentación de la carga. Se dice que un circuito
está sincronizado con la línea de c.a. cuando el UJT entrega el pulso de disparo al
SCR cuando éste tiene polaridad directa de las t erminales principales.

M ATERI AL Y EQUIP O:
1 Fuente de cd.
1 Fuente de c.a. aislada de tierra.
1 Mult ímetro.
1 Protoboard.
1 Osciloscopio.
1 Capacitor, C1= 10 µF.
1 Diodo de silicio 1N4004 (CR1)
2 Lámparas miniatura 6.3V (DS1 y DS2)
1 UJT 2N2646 (Q1)
1 SCR C106B (Q2)
4 Resistencias (R1=270 W @ 1W , R2=4.7K W , R4=100 W , R5=47 W )
1 Potenciómetro (R3=500K Ω )
1 Interruptor SPST (S1)
1 Interruptor PBNC (S2)
1 Diodo Zener 6.8V @ 1W

DES ARROLLO :
I. Funcionamiento del circuito de atraso UJT - SCR:
1. Arme el circuito de la Figura No. 1. Verif ique que S1 esté abierto
2. Ajuste R3 aproximadamente a la posición intermedia y ajuste la f uente de cd a
12Vcd.
3. Cierre S1 y espere aproximadamente 5 segundos. ¿Qué ocurre? ___________
_______________________________________________________________
4. Oprima S2 momentáneamente y libérel o. ¿Qué ocurre? __________________
_______________________________________________________________
5. Aumente un poco R3 sin llegar al máximo y oprima y libere S2. ¿Qué ocurre
ahora? _________________________________________________________
__________________ _____________________________________________
6. Disminuya R3 abajo del punto intermedio pero sin llegar al mínimo, oprima y
libere nuevamente S2. Explique: _____________________________________
_______________________________________________________________

7. Experimente con el circuito y con un cronómetro indique cuál es el m ínimo y el
máximo retraso práctico. Incluya el análisis matemático para determinar el
mínimo y máximo retraso teórico.

T (mínimo) T (máximo)
Teórico
Práctico

II. Medición del período del circuito de atraso UJT - SCR:
8. Reajuste R3 a la posición intermedia.
9. Conecte el osciloscopio entre el emisor de Q1 y tierra. Ajuste los controles del
osciloscopio en operación de cd y una velocidad baja de barrido.
10. Oprima y libere S2 mientras observa la f orma de onda desplegada. ¿Qué
representa esta f orma de onda? ________________________________________
__________________________________________________________________
11. ¿Qué determina el barrido del osciloscopio? _________ __________________
__________________________________________________________________
12. Oprima y libere S2 y registre el máximo voltaje a través de C3.
VC3 = _________________
13. ¿Qué representa este voltaje para el UJT? _____________________________
14. Ajuste R3 a su resistencia mínima. Suponiendo que R3=0 Ω, calcule el per íodo
del circuito de retraso utilizando R2 y C1.
T = ___________________
15. Oprima y libere S2 y mida la constante de tiempo de carga de C1 utilizando el
osciloscopio.
T = ________ ___________
16. Compare ambos resultados. Explique cualquier discrepancia. ______________
__________________________________________________________________

III. Diseño de un circuito de disparo UJT - SCR sincronizado por línea:

17. Diseñe un circuito de d isparo UJT - SCR sincronizado por línea. Utilice una
alimentación de 120 Vrms aislada de tierra y un f oco de 40W como carga. Para el
diodo zener utilice uno con Vz=20V y Pz=2W , o bien, otro con características
similares. Para el diseño considere las caracter ísticas del UJT y del SCR.
Compruebe que el circuito diseñado tiene un amplio rango de control. Dibuje a
escala la f orma de onda observada en la carga para el mínimo y el máximo ángulo
de retardo y así establecer el rango de control. (Utilice punta atenuad a para
observar la forma de onda).

CIRCUITO UTILIZADO:


Figura No. 1 Circuito de atraso UJT - SCR


OBSERVACIONES Y CONCLUSIONES:

PRACTIC A No. 8.
CIRCUITO S DE CONTROL DE FASE P ARA EL TRI AC

OBJETIVOS:
a) Comprobar el f uncionamiento de un circuito de disparo RC doble para un
TRIAC
b) Mostrar la operación de un circuito de control de fase b ásico DIAC - TRIAC.
c) Mostrar un método para reducir la histéresis de un circuito de control de f ase
b ásico DIAC - TRIAC.
d) Mostrar la operaci ón de un circuito de control de fase de rango extendido y libre
de histéresis.

INTRODUCCIÓN:
En TRIAC se utiliza primordialmente en circuitos de control de energía de c.a.
debido a su conducción bidireccional. En ambos semiciclos del voltaje aplicado se
entrega energía a la carga, con lo que se aprovecha mejor la energía disponible. Ya
que el TRIA C tiene cuatro métodos de disparo independientes, se puede utilizar una
diversidad de métodos de disparo. El DIAC se diseño especialmente para disparar al
TRIAC. El DIAC conduce y produce un pulso de corriente cuando su voltaje de ruptura
se excede en cua lquier dirección. En consecuencia puede suministrar cualquier
polaridad de corriente de disparo para el TRIAC. Al controlar la dirección de disparo
del DIAC con respecto a la polaridad de voltaje a través de las terminales del TRIAC,
se puede controlar de manera ef ectiva la dirección del f lujo de corriente y el ángulo de
conducción del TRIAC.
La histéresis en el circuito de disparo del TRIAC se debe al voltaje no uniforme
de disparo y produce disparo no simétrico.

M ATERI AL Y EQUIP O:
1 Fuente de c.a. ai slada de tierra (hasta 40Vca)
1 Mult ímetro.
1 Protoboard.
1 Osciloscopio.
1 Capacitor, C1= 0.1 µF.
2 Diodos de silicio 1N4004 (CR3 y CR4)
4 Lámparas miniatura 6.3V (DS1 a DS4 )
1 DIAC (CR1 )
1 TRIAC SC136B (Q1 )
2 Resistencias (R1=22K W y R3=10 K W )
1 Potenciómetro (R2=1 00K Ω )
1 Interruptor SPST (S1)

DES ARROLLO :

I. Funcionamiento de un circuito de disparo RC doble para el TRI AC :
1. Arme el circuito de la Figura No. 1. U tilice una alimentación de 1 20Vrms a 60Hz
aislada de tierra y en la carga un f oco de 40W . Compruebe si el circuito tiene
un amplio rango de control para el ángulo de retardo de disparo. Mostrar las
formas de onda para tres dif erentes ángulos de retardo (mínimo, intermedio y
máximo). Si es necesario ajustar algunos valores f undamentando los cambios
que se hagan en el circuito.

II. Operaci ón de un circuito básico de control de fase DI AC - TRI AC
2. Arm e el circuito de la Figura No. 2 .
3. Ajuste R2 a máxima resistencia y asegúrese que S1 este abiert o.

4. Ajuste la f uente de poder a 40Vca y cierre S1.
5. Disminuya lentamente R2. ¿Qué ocurre con el encendido inicial de las
lámparas?_______________________________________________________
6. Aumente lentamente R2 al máximo. ¿Qué ocurre con el apagado de las
lámpa ras?_______________________________________________________
_______________________________________________________________
7. ¿Cómo controla R2 el brillo de las lámparas?___________________________
____________________________________________________________ ______
__________________________________________________________________
8. Conecte el osciloscopio a través de la carga (lámparas) y disminuya lentamente
R2 observando el ángulo de conducción inicial, al ir disminuyendo R2 observe
como aumenta el ángulo de c onducción. Luego aumente lentamente R2 y
observe el minino ángulo de conducción. Dibuje a escala las tres f ormas de
onda y registre sus observaciones.







Angulo de conducción (Min) ___ _______
Angulo de conducción (Max) __ _ _ ___

8. ¿Se puede decir que este circuito exhibe histéresis?______________________
9. Explique:_________________________________________________________
__________________________________________________________________
__________________________________________ ________________________
10. ¿Qué ventaja observa en el funcionamiento de este circuito?_______________
__________________________________________________________________
__________________________________________________________________

III. Reducción de la hi stéresis en un circuito de control de fase básico DI AC -
TRI AC:
11. Modif ique el circuito de la f igura No. 2 por el de la f igura No. 3.
12. Asegure que R2 este ajustada al máximo y la fuente a 40Vca.
13. Disminuya lentamente R2. ¿Qué ocurre con el encendido inicial de las
lámparas?_______________________________________________________
14. Aumente lentamente R2 al máximo. ¿Qué ocurre con el apagado de las
lamparas?__________________________________________________________
_____________________________________ _____________________________
15. Conecte el osciloscopio a través de la carga (lámparas) y disminuya
lentamente R2 observando el ángulo de conducción inicial, al ir disminuyendo R2
observe como aumenta el ángulo de conducción. Luego aumente lentamente R2 y
observe el mínimo ángulo de conducción. Dibuje a escala las tres formas de onda
y registre sus observaciones.






Angulo de conducción (Min) ___ _______
Angulo de conducción (Max) __ _ _ ___

16. ¿Como se disminuye la histéresis en este circuito? Explique:_______________
__________________________________________________________________
__________________________________________________________________

IV. Circuito de control de fase DI AC - TRI AC de rango extendido y libre de
histéresis.
17. Arme el circuito de la Figura No. 4.
18. Ajuste R2 a máxima resistencia y la fuente a 40Vca.
19. Disminuya lentamente R2. ¿Qué ocurre con el encendido inicial de las
lámaras?_______________________________________ ____________________
20. Aumente lentamente R2 al máximo. ¿Qué ocurre con el apagado de las
lámparas?__________________________________________________________
_______________________________________________________________
21. Conecte el osciloscopio a través de la carga (lámparas) y disminuya lentamente
R2 observando el ángulo de conducción inicial, al ir disminuyendo R2 observe
como aumenta el ángulo de conducción. Luego aumente lentamente R2 y
observe el mínimo ángulo de conducción. Dibuje a escala las tres formas de
onda y registre sus observaciones.







Angulo de conducción (Min) ___ _______
Angulo de conducción (Max) __ _ _ ___

22. ¿Se puede decir que é ste circuito elimina histéresis?_____________________
23. Explique el comportamiento :___ _____________________________________
__________________________________________________________________
__________________________________________________________________

V. Circuito de disparo DI AC - TRI AC de rango extendido y libre de histéresis
simétrico para 120Vrms .

24. Dado el circuito de la Figura No. 4. Agregue una red para descargar el
capacitor también en los semiciclos negativos. Cambie la f uente por una de
120Vrms y la carga un f oco de 40W . Utilice una f uente aislada de tierra para
observar que la f orma de onda en la carga es simétrica. Determine el rango de
control para el circuito propuesto y explique si se tiene un ajuste f ino de la R2.

CIRCUITOS UTILIZADO S:

Figura No. 1


Figura No. 2 Figura No. 3


Figura No. 4


OBSERVACIONES Y CONC LUSIONES:
Tags