Master of business administration business economicsManagement science (Mba)

amanpalya3 43 views 46 slides May 27, 2024
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

Master of business administration business economics management science semester 2


Slide Content

MBAFM/BI/BE-II Semester
Management Science
January-May: 2024
Dr. Shambhu Nath Singh
Associate Professor (Economics & Finance)
Department of Banking, Economics & Finance
Bundelkhand University, Jhansi

Syllabus: Management Science
•UnitI:ManagementScience-BasicConceptsandits
roleinDecisionMaking;LinearProgrammingProblem:
GraphicalandSimplexMethod;Duality
•UnitII:BigMMethod;IntegerProgrammingBranchand
Boundalgorithm;SensitivityAnalysis;Goal
ProgrammingProblemProgrammingProblem
•UnitIII:TransportationProblemandAssignment
Problem;QueuingTheory;
•UnitIV:NetworkAnalysisTechniques;PERT/CPM;
DecisionTheoryandDecisionTrees
•UnitV:InventoryManagement;GameTheory;
Simulation.

Evolution of Management Science
OperationResearchorManagementsciencecameinto
existenceduringsecondworldwar,whentheBritishand
theAmericanmilitarymanagementcalledagroupof
scientistswithdiverseeducationalbackgroundnamely
Physics,Biology,Statistics,Mathematics,Psychologyetc
toapplyascientificapproach,todealwithstrategicand
tacticalproblemsofvariousmilitaryoperations.tacticalproblemsofvariousmilitaryoperations.
Theobjectivewastoallocatescareresourcesinan
effectivemannertovariousmilitaryoperationsandto
theactivitieswithineachoperation.Thisnewapproach
tothesystematicandscientificstudyofoperationsofthe
systemwascalledOR.ThetermORwasfirstintroduced
byMcCloskyandThrefthenofBowdsey(asmalltownof
UK)in1940s.

Concept of Operation Research
In1950,ORwasrecognizedasasubjectof
academicstudyintheuniversities,sincethenthe
subjecthasbeengainingmoreandmore
importanceforthestudentsof Engineering,
Mathematics,PublicAdministration,Management,
BehavioralScienceetc.ItisalsoknownasDecision
Science,ManagementScienceandQuantitative
BehavioralScienceetc.ItisalsoknownasDecision
Science,ManagementScienceandQuantitative
Methods.
HenceORcanbeassociatedwith, “Anactof
winningthewarwithoutactuallyfightingit.”
AccordingtoH.M.Wagner,“ORisascientific
approachofproblemsolvingforexecutive
management.”

Steps in Designing Operation Research
ORisalogicalandsystematicapproachfor
decisionmaking.Therearesiximportantsteps
inORstudyandthesestepsarearrangedin
followinglogicalorder-
1.ObservetheProblemEnvironment1.ObservetheProblemEnvironment
2.AnalyzeandDefinetheProblem
3.DevelopaModel
4.SelectanAppropriateDataInput
5.ProvideaSolutionandTestReasonableness
6.ImplementtheSolution

1-Observe the Problem Environment
StepIintheprocessofORstudyis
observingtheproblemenvironment.
Theactivitiesthatconstitutethisstep
arevisits,conferences,observations,arevisits,conferences,observations,
researchesandsoon.Withthehelpof
suchactivities,theORscientistsget
sufficientinformationandsupportto
proceedandisbetterpreparationto
formulatetheproblem.

2-Analyze and Define the Problem
StepIIisanalyzinganddefiningthe
problem.Inthisstepnotonlythe
problemisdefinedbutalsouses,
objectivesandlimitationsoftheobjectivesandlimitationsofthe
studyareexpressedinthelightofthe
problem.Theendresultofthisstepis
aclearindicationofneedfora
solutionandunderstandingits
nature.

3-Develop a Model
•StepIIIistoconstructamodel.Amodel
isrepresentationofsomerealsituation.
ORmodelsarebasicallymathematical
modelsrepresentationsystemprocess
orenvironmentintheformoftheorenvironmentintheformofthe
equations,relationshiporformulae.The
modelmayalsobemodifiedifthe
managementisnotsatisfiedwiththe
answerthatgives.

4-Select an Appropriate Data Input
Ifdatainputisnotappropriatethenno
modelwillworkappropriately.Hence,
selectanappropriatedatainputisavital
stepinORprocess.Importantactivitiesin
thisstepareanalyzinginternal-externalthisstepareanalyzinginternal-external
dataandfacts,collectingopinionsusing
computerdatabanks.Thepurposeofthis
stepistohaveasufficientdatainputto
operateandtestthemodel.

5-Provide a Solution and Test Reasonableness
StepVinORprocessistogetasolutionwith
thehelpofamodelanddatainput.Sucha
solutionisnotimplementedimmediately.
First,thesolutionisusedtotestthemodel
andtofindlimitations,ifany.Ifthemodelisandtofindlimitations,ifany.Ifthemodelis
notbehavingproperly,updatingand
modificationofthemodelisconsideredat
thisstage.Theendresultofthisstepisa
solutionthatisdesirableandsupportsthe
currentorganizationalobjective.

6-Implement the Solution
Implementationofthesolutionobtainedin
previousstepisthelaststepofORprocess.
Ifthegaparisesbetweenthesolution
providerandthepersonwhowishestouse,
itshouldbeeliminated.Todothis,ORitshouldbeeliminated.Todothis,OR
ScientistaswellasManagementshould
playapositiverole.Aproperly
implementedsolutionobtainedthroughOR
techniquesresultinimprovedworkingand
winsthemanagementsupport.

Operation Research Models
Amodelisdefinedasanidealrepresentationof
thereallifesituation.Variousitemslikeamap,
amultipleactivitycharts,PERTnetwork,break
evenequation,balancesheetetcareallthe
modelsbecauseeachofthemrepresentsafewmodelsbecauseeachofthemrepresentsafew
aspectsofthereallifesituation.Itmeans
modelrepresentsoneorfewaspectsofreality.
Theobjectiveofmodelistoprovideameans
foranalyzingthebehaviorofthesystemforthe
purposeofimprovingitsperformance.

Classification of Models
Themodelscanbeclassifiedasfollows:
1.Bydegreeofabstraction(Mathematicalmodels
andLanguagemodels)
2.Byfunction(Descriptivemodels,Predictive
modelsandNormativemodels)
3.Bystructure(IconicorPhysicalmodelsand3.Bystructure(IconicorPhysicalmodelsand
Analogueorschematicmodels)
4.Bynatureoftheenvironment (Deterministic
modelsandProbabilisticmodels)
5.Bytheextentofgenerality(Generalmodelsand
Specificmodels)
6.Bythetimehorizon(StaticmodelsandDynamic
models)

1-By Degree of Abstraction
MathematicalmodelsorSymbolicmodels-This
modelusesasetofmathematicalsymbolsto
representthedecisionvariablesofasystem
underconsideration.Thesevariablesare
repeatedbymathematicalequationswhichrepeatedbymathematicalequationswhich
describethepropertiesofthesystem.For
example-linearprogrammingproblem
Languagemodels-Itisalsoabstracttype
model.Forcricketorhockeymathcommentary
aretheexampleofthismodel.

2-By Function
DescriptiveModels-Itexplainsthevariousoperationsinnon
mathematicallanguageandtrytodefinethefunctional
relationshipandinteractionbetweenvariousoperations.
Theysimplydescribethesomeaspectsofthesystemonthe
basisofobservation,surveyorquestionnaireetcbutdonot
predictitsbehaviors.Forexample-theorganizationalcharts,
piediagramandlayoutplandescribesthefeaturesoftheir
respectivesystems.
PredictiveModels-ItexplainsorpredictsthebehaviorsofPredictiveModels-Itexplainsorpredictsthebehaviorsof
thesystem.Forexample-exponentialsmoothingforecast
modelpredictthefuturedemandandpredictingelection
resultsbeforeactuallythecountingiscompleted.
NormativeModelsorPrescriptiveModels-Itdevelopsthe
decisionrulesforoptimalsolutions.Theyareapplicableto
therepetitiveproblems,thesolutionprocessofwhichcanbe
programmedwithoutmanagerialinvolvement.LPisa
prescriptiveornormativemodelasitprescribewhatthe
managersmustfollow.

3-By Structure
IconicorPhysicalModels-Inthispropertiesofrealsystem
arerepresentedbythepropertiesofthemselves,frequently
withachangeofscale.Thisisaphysicalorpictorial
representationofvariousaspectsofasystem.Forexample-
Toys,modelofabuilding,scaledupmodelofacellin
biologyetc.
AnalogueorSchematicModels-AnaloguemodelscanAnalogueorSchematicModels-Analoguemodelscan
representdynamicsituationsandareusedmoreoftenthan
iconicmodelssincetheyareanalogoustothecharacteristics
ofthesystemunderstudy.Theyuseonesetofthe
propertiestorepresentsomeothersetofpropertieswhich
thesystemunderstudypossesses.Forexample-Anetwork
ofwaterpipestorepresenttheflowofcurrentinan
electricalnetworkorgraphs,organizationalchartsandso-
on.

4-By Nature of the Environment
DeterministicModels-Itismodelwhichdoesnot
takeuncertaintyintoaccount.Indeterministic
modelsvariablesarecompletelydefinedandthe
outcomesarecertain.Forexample-alinear
programmingproblem,anassignmentproblem,
EOQ,andtransportationmodelarethe
deterministicmodels.deterministicmodels.
ProbabilisticModelsorstochasticModels-Itisa
modelwhichtakesriskanduncertaintyasan
importantaspectoftheproblem.Theinputand
outputvariablestaketheformofprobability
distribution.Forexample-Stochasticprobability
modelsandtheexponentialsmoothingmodelfor
forecastingdemandaretheprobabilisticmodels.

5-By the Extent of Generality
Generalmodels-Linearprogrammingmodelis
knownasageneralmodelsinceitcanbeused
foranumberoffunctions(i.e.productmix,
productionscheduling,marketingetc)ofan
organization.organization.
Specificmodels-Salesresponseequationasa
functionofadvertisingisapplicableinthe
marketingfunctionaloneisatypeofspecific
model.

6-By the Time Horizon
StaticModels-Thisisamodelwhichdoesnottake
timeintoaccount.Itassumesthatthevaluesof
thevariablesdonotchangewithtimeduringa
certainperiodoftimehorizon.Theyareeasierto
formulate,manipulateandsolve.Forexample-LPP,
Transportation,AssignmentandEOQ.Transportation,AssignmentandEOQ.
DynamicModels-Thismodelconsiderstimeasone
oftheimportantvariable.Theyareusedfor
optimizationofmultistageproblemswhichrequire
aseriesofdecisionswiththeoutcomeofeach
dependingupontheresultsfthepreviousdecision
intheseries.Forexample-dynamicprogramming
andreplacementproblem.

Scope of Operation Research
Intherecentyearsofdevelopment,ORhasenteredsuccessfullyin
differentareasofresearch.Itisusefulinthefollowingimportant
fieldslike-
1-Inagriculture
Withthesuddenincreaseofpopulationandresultingshortageof
food,everycountryisfacingtheproblemofOptimumallocationof
landtoavarietyofcropsaspertheclimaticconditions.Optimum
distributionofwaterfromnumerousresourceslikecanalforirrigation
purposes.Hencethereisarequirementofdeterminingbestpoliciespurposes.Hencethereisarequirementofdeterminingbestpolicies
underthegivenrestrictions.Thereforeagoodquantityofworkcanbe
doneinthisdirection.
2-
Infinance
Intherecenttimesofeconomiccrisis,ithasbecomeveryessentialfor
everygovernmenttodoacarefulplanningfortheeconomicprogress
ofthecountry.ORtechniquescanbeappliedin-
1.Todeterminetheprofitplanforthecompany
2.Tomaximizethepercapitaincomewithleastamountofresources
3.Todecideonthebestreplacementpolicies,etc

Scope of Operation Research
3-Inindustry
Iftheindustrymanagermakeshispoliciessimplyonthebasisofhis
pastexperienceandadayapproacheswhenhegetsretirement,then
aseriouslossisencounteraheadoftheindustry.Thisheavylosscan
berightawaycompensatedthroughappointingayoungspecialistof
ORtechniquesinbusinessmanagement.ThusORishelpfulforthe
industrydirectorindecidingoptimumdistributionofseverallimited
resourceslikemen,machines,material,etctoreachattheoptimum
decision.
4-Inmarketing4-Inmarketing
WiththeassistanceofORtechniquesamarketingadministratorcan
decideupon-
1.Wheretoallocatetheproductsforsalesothatthetotalcostof
transportationissettobeminimum
2.Theminimumperunitsaleprice
3.Thesizeofthestocktocomeacrosswiththefuturedemand
4.Howtochoosethebestadvertisingmediawithrespecttocost,time
etc?
5.How,whenandwhattobuyattheminimumlikelycost?

Scope of Operation Research
5-Inpersonnelmanagement
ApersonnelmanagercanutilizeORtechniques-
1.Toappointthehighlysuitablepersononminimumsalary
2.Toknowthebestageofretirementfortheemployees
3.Tofindoutthenumberofpersonsappointedinfulltimebasiswhenthe
workloadisseasonal
6-Inproductionmanagement
AproductionmanagercanutilizeORtechniques-AproductionmanagercanutilizeORtechniques-
1.Tocalculatethenumberandsizeoftheitemstobeproduced
2.Inschedulingandsequencingtheproductionmachines
3.Incomputingtheoptimumproductmix
4.Tochoose,locateanddesignthesitesfortheproductionplans
7-InL.I.C
ORapproachisalsoapplicabletofacilitatetheL.I.Cofficestodecide-
1.Whatshouldbethepremiumratesforarangeofpolicies?
2.Howwelltheprofitscouldbeallocatedinthecasesofwithprofitpolicies?

Role of Operations Research in Decision-Making
TheOperationResearchmaybeconsideredasatool
whichisemployedtoraisetheefficiencyof
managementdecisions.ThebenefitsofORstudy
approachinbusinessandmanagementdecisionmaking
maybecategorizeasfollows-
1-Bettercontrol-Themanagementoflargeconcernsfinds
itmuchexpensivetogivecontinuousexecutive
supervisionsoverroutinedecisions.AnORapproachsupervisionsoverroutinedecisions.AnORapproach
directstheexecutivestodedicatetheirconcentrationto
morepressingmatters.Forinstance-ORapproach
handlesproductionschedulingandinventorycontrol.
2-Bettercoordination-Sometimes,ORhasbeenvery
helpfulinpreservingthelawandordersituationoutof
disorder.Forinstance,anORbasedplanningmodel
turnsouttobeavehicleforcoordinatingmarketing
decisionswiththerestrictionsforcedonmanufacturing
capabilities.

Role of Operations Research in Decision-Making
3-Bettersystem-ORstudyisalsoinitiatedto
examineaparticularproblemofdecisionmaking
likesettingupanewwarehouse.LaterOR
approachcanbemoredevelopedintoasystemto
beemployedfrequently.Asaresultthecostof
undertakingthefirstapplicationmaygetbetter
profits.
undertakingthefirstapplicationmaygetbetter
profits.
4-Betterdecisions-ORmodelsregularlygiveactions
thatdoenhanceansensitivedecisionmaking.
Sometimesasituationmaybesocomplexthatthe
humanmindcanneverexpecttoassimilateallthe
significantfactorswithouttheaidofORand
computeranalysis.

LINEAR PROGRAMMING
PROBLEM (LPP)
Now-a-daysMen,Money,Materialsetc
arenotavailableinsufficientquantity.
Thatiswhy,Economistsarebusyin
developingnewtechniquesandtheir
applications.
Togetthemaximum profitfrom
applications.
Togetthemaximum profitfrom
limitedanddefiniteresourcesLPPis
used.LPPisamathematicaltechnique
forsolvingmaximizationand
minimizationproblemsubjecttocertain
constraints,involvingthevariables
havinglinearrelationshipwitheach
other.

Mathematical Form
LPPwasdevelopedbyRussian
MathematicianL.V.Kantrovichin
1939.
Letusconsidertwodecision
variablesx
1
andx
2
then-
variablesx
1
andx
2
then-
MaxorMinZ=c
1
x
1
+c
2
x
2
Subjectto
a
11
x
1
+ a
12
x
2
≤ or = or ≥ b
1
a
21
x
1
+ a
22
x
2
≤ or = or ≥ b
2
and x
1
, x
2
≥ 0

Question/Problem
AcompanyisproducingtwoproductsA
andB.ProductAismanufacturedby2units
ofchemicalsand1unitofcompound,andBis
manufacturedby1unitofchemicaland2
unitsofcompounds.Only8,00unitsofunitsofcompounds.Only8,00unitsof
chemicalsand1,000unitsofcompoundsare
availabletothecompany.Theprofitperunit
ofAandBare30and20rupeesrespectively.
GiveamathematicalformulationofthisLPP
intermsofmaximizingtheprofitandsolveit
byGraphicalaswellasSimplexMethod.

Duality Theorem
DualityTheoremStatesthatforeveryLPP,thereisauniqueanotherLPP,
associatedwithit,involvingsamedataandcloselyrelatedtooptimal
solution.
Theoriginalproblemistermedas‘primal’andtheotherproblemistermed
as‘dual’,orwecansaythatgivenproblemisprimalanditsoutcomeisdual.
ForeveryMax/Min.probleminLPP,thereisuniquesimilarproblemof
Min/MaxinvolvingdataoforiginalLPP,orMin/MaxZofprimalisMax/Min
Zofitsdual.
Maximumfeasiblevalueofprimalobjectivefunction=Minimumfeasible
valueofdualobjectivefunction.valueofdualobjectivefunction.
TworeasonsfortheimportanceofDuality:-
1.Iftheprimalcontains,alargenumbersofconstraintsandsmallnumbersof
variables,thenthecalculationcanbereducedbyconvertingitindualand
thensolvingit.
2.Fromthecostoreconomicpointofview,theinterpretationofdual
variables,whichareusefulinmakingfuturedecisionsandtheactivities
beingprogrammed?
Thedualofdualoutcomeofanyproblemisprimalofthatproblemonly.
CoefficientofobjectivefunctionofprimalistheRHSvalueofconstraintsof
itsdual,andRHSvalueofconstraintsinprimalisthecoefficientofobjective
functionofitsdual.

Question: Find the dual of following LPP or the given primal-
Max Z = 90x + 40y
Subject to,x + 2y ≥ 60; & 3x + 4y ≥ 60
and x, y ≥ 0
Primal or Original Problem
Maximize
Z = 90x + 40y
Subjectto,
Dual Problem
Minimize
Z = 60a + 60b
Subjectto,Subjectto,
x + 2y ≥ 60
3x + 4y ≥ 60
and x, y ≥ 0
Subjectto,
a + 3b ≤ 90
2a + 4b ≤ 40
and a, b ≥ 0

With the Best Compliments
Thanking to all…..
By
Dr. Shambhu Nath Singh
Associate ProfessorAssociate Professor
(Former District Economic & Statistical Officer)
M. Sc. (Physics), MBA (Finance), MA (Economics)
JRF in Management, NET in Economics
Coordinator Ph. D. Coursework
Bundelkhand University, JHANSI
Mobile-09450075770; 08299233527 (WhatsApp)
[email protected]

Unit 1 is over. Unit 1 is over.
Thank You so much....
Dr. Shambhu Nath Singh