MAT269_slides-04.pdf7896546879878797897897

BetsyIsabelCorreaEsp 8 views 27 slides Oct 25, 2025
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

matematica aplicada


Slide Content

MAT-269: Estadstica descriptiva
multivariada
Felipe Osorio
fosorios.mat.utfsm.cl
Departamento de Matematica, UTFSM
1 / 27

Datos multivariados
Datos multivariados:
Tenemos una muestra aleatoriax1; : : : ;xndonde para cada observacion se ha medido
p2variables xi= (xi1; : : : ; xip)
>
es vector
p-dimensional.
Podemos disponer la informacion en una
1
X=
0
B
B
B
@
x11x12: : : x1p
x21x22: : : x2p
.
.
.
.
.
.
.
.
.
xn1xn2: : : xnp
1
C
C
C
A
=
0
B
B
B
@
x
>
1
x
>
2
.
.
.
x
>
n
1
C
C
C
A
:
Observacion:
Por simplicidad asumiremos quex1; : : : ;xnson variables aleatorias IID desde
Fp(;)(conFpcomun).
1
X= (xij), parai= 1; : : : ; n;j= 1; : : : ; p.
2 / 27

Datos de Flores Iris (Anderson, 1935; Fisher, 1936)
IrisIrisIris
3 / 27

Datos de Flores Iris (Anderson, 1935; Fisher, 1936)Edgar Anderson's Iris Data
Scatter Plot Matrix
Sepal.Length
7
8
7 8
5
6
5 6
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
Sepal.Width
3.5
4.0
4.5
3.54.04.5
2.0
2.5
3.0
2.02.53.0
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
ll
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l l
l
l
l
l
l
l
l
ll l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
Petal.Length4
5
6
7
4567
1
2
3
4
1234 ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
ll
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
lllll
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
l l
ll
l
l
l
l
ll ll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
llll l
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
ll
ll
l
l
l
l
ll ll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
lllll
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
ll
ll
l
l
l
l
llll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
Petal.Width
1.5
2.0
2.5
1.52.02.5
0.0
0.5
1.0
0.00.51.0
4 / 27

Datos de Flores Iris (Anderson, 1935; Fisher, 1936)
Datos observados:
Mediciones (cm) del largo y ancho de los
ores desde 3 especies de
Objetivo:
IObtener una funcion que permita
IUsando las medidas de una or,
Caractersticas del problema:
IEl analisis exploratorio revela una separacion evidente en.
ITecnicas mas renadas permiten identicar las 3 especies, p.ej.:
IAnalisis discriminante,
ITecnicas de clasicacion
IAprendizaje de maquina
5 / 27

Conjunto de datos
> iris
S e p a l . L e n g t h S e p a l . W i d t h P e t a l . L e n g t h P e t a l . W i d t h S p e c i e s
1 5.1 3.5 1.4 0.2 s e t o s a
2 4.9 3.0 1.4 0.2 s e t o s a
3 4.7 3.2 1.3 0.2 s e t o s a
4 4.6 3.1 1.5 0.2 s e t o s a
5 5.0 3.6 1.4 0.2 s e t o s a
6 5.4 3.9 1.7 0.4 s e t o s a
7 4.6 3.4 1.4 0.3 s e t o s a
8 5.0 3.4 1.5 0.2 s e t o s a
9 4.4 2.9 1.4 0.2 s e t o s a
10 4.9 3.1 1.5 0.1 s e t o s a
11 5.4 3.7 1.5 0.2 s e t o s a
12 4.8 3.4 1.6 0.2 s e t o s a
13 4.8 3.0 1.4 0.1 s e t o s a
...
148 6.5 3.0 5.2 2.0 v i r g i n i c a
149 6.2 3.4 5.4 2.3 v i r g i n i c a
150 5.9 3.0 5.1 1.8 v i r g i n i c a
6 / 27

Graco del conjunto de datos
x
p a i r s
p a i r s $S p e c i e s )Sepal.Length
2.02.53.03.54.0
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
0.51.01.52.02.5
4.5
5.5
6.5
7.5
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
2.0
2.5
3.0
3.5
4.0
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
Sepal.Width
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
ll
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
ll
l l
l
l
l
l
l
l
l
ll l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
Petal.Length
1
2
3
4
5
6
7
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
ll
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
4.55.56.57.5
0.5
1.0
1.5
2.0
2.5
lllll
l
l
ll
l
ll
ll
l
ll
l ll
l
l
l
l
ll
l
llll
l
l
lll l
l
l l
ll
l
l
l
l
ll ll
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
llll l
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
l l
ll
l
l
l
l
ll ll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
1234567
lllll
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
ll
ll
l
l
l
l
llll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
Petal.Width Sepal.Length
2.02.53.03.54.0
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
0.51.01.52.02.5
4.5
5.5
6.5
7.5
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
2.0
2.5
3.0
3.5
4.0
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
Sepal.Width
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
ll
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
ll
l l
l
l
l
l
l
l
l
ll l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
Petal.Length
1
2
3
4
5
6
7
ll
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
ll
ll
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
4.55.56.57.5
0.5
1.0
1.5
2.0
2.5
lllll
l
l
ll
l
ll
ll
l
ll
l ll
l
l
l
l
ll
l
llll
l
l
lll l
l
l l
ll
l
l
l
l
ll ll
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
llll l
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
l l
ll
l
l
l
l
ll ll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l ll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
1234567
lllll
l
l
ll
l
ll
ll
l
ll
lll
l
l
l
l
ll
l
llll
l
l
llll
l
ll
ll
l
l
l
l
llll
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
lll
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
lll
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
Petal.Width
7 / 27

Estadsticas de resumen
Analogamente a la xys
2
para el caso unidimensional. Podemos
denir sus
x=
1
n
n
X
i=1
xi;
S=
1
n1
n
X
i=1
(xix)(xix)
>
:
En efecto,x= (x1; : : : ;xp)
>
yS= (srs), donde
xj=
1
n
n
X
i=1
xij;
srs=
1
n1
n
X
i=1
(xirxr)(xisxs);
parar; s= 1; : : : ; p.
8 / 27

Estadsticas de resumen
Observacion:
Algunas propiedades del, surgen de escribir
formas compactas que dependen de la matriz de datosX= (xij)2R
np
. En efecto,
x=
1
n
n
X
i=1
xi=
1
n
X
>
1n:
Sea
Q=
n
X
i=1
(xix)(xix)
>
=
n
X
i=1
(xix)x
>
i

n
X
i=1
(xix)x
>
=
n
X
i=1
xix
>
i
x
n
X
i=1
x
>
i
=
n
X
i=1
xix
>
i
nxx
>
;
pues
P
n
i=1
(xix)x
>
=0.
2
2
No se hara distincion sobre el
9 / 27

Estadsticas de resumen
Notando
n
X
i=1
xix
>
i
=X
>
X;
sigue que
S=
1
n1
Q=
1
n1
n
X
>
Xn

1
n
X
>
1n

1
n
X
>
1n

>
o
=
1
n1

X
>
X
1
n
X
>
1n1
>
n
X

=
1
n1
X
>
CX
conC=In
1
n
1n1
>
nla. Es sencillo mostrar que
C
>
=C; C
2
=C;
es decirCes matriz de proyeccion. Esto permite mostrar el siguiente resultado.
10 / 27

Estadsticas de resumen
Resultado 1:
La matriz de covarianzaS, es semidenida positiva.
Demostracion:
Seaa2R
p
, vector no nulo. Tenemos que,
a
>
Sa=
1
n1
a
>
X
>
CXa=
1
n1
a
>
X
>
C
2
Xa
=
1
n1
u
>
u0; u=CXa;
es decir,Ses matriz semidenida positiva.
3
3
Ssera denida positiva sinp+ 1.
11 / 27

Estadsticas de resumen
La pvariables de interes, es dada por:
R= (rij);
donde
rjk=
P
n
i=1
(xijxj)(xikxk)
pP
n
i=1
(xijxj)
2
P
n
i=1
(xikxk)
2
=
sjk
p
sjjskk
;
paraj; k= 1; : : : ; p, conS= (sjk).
Sea,D= diag(s11; s22; : : : ; spp). As, podemos escribir
R=D
1=2
SD
1=2
; S=D
1=2
RD
1=2
:
12 / 27

Estadsticas de resumen: Datos Iris
> x
#
> xbar
> S
>
#
> xbar
S e p a l . L e n g t h S e p a l . W i d t h P e t a l . L e n g t h P e t a l . W i d t h
5 . 8 4 3 3 3 . 0 5 7 3 3 . 7 5 8 0 1 . 1 9 9 3
> S
S e p a l . L e n g t h S e p a l . W i d t h P e t a l . L e n g t h P e t a l . W i d t h
S e p a l . L e n g t h 0 . 6 8 5 7 -0.0424 1.27 0 . 5 1 6
S e p a l . W i d t h -0.0424 0 . 1 9 0 0 -0.33 -0.122
P e t a l . L e n g t h 1 . 2 7 4 3 -0.3297 3.12 1 . 2 9 6
P e t a l . W i d t h 0 . 5 1 6 3 -0.1216 1.30 0 . 5 8 1
#
> xbar
>
> z
13 / 27

Estadsticas de resumen: Datos Iris
#
> z
> z
$cov
S e p a l . L e n g t h S e p a l . W i d t h P e t a l . L e n g t h P e t a l . W i d t h
S e p a l . L e n g t h 0 . 6 8 5 6 9 3 5 - 0 . 0 4 2 4 3 4 0 1 . 2 7 4 3 1 5 4 0 . 5 1 6 2 7 0 7
S e p a l . W i d t h - 0 . 0 4 2 4 3 4 0 0 . 1 8 9 9 7 9 4 - 0 . 3 2 9 6 5 6 4 - 0 . 1 2 1 6 3 9 4
P e t a l . L e n g t h 1 . 2 7 4 3 1 5 4 - 0 . 3 2 9 6 5 6 4 3 . 1 1 6 2 7 7 9 1 . 2 9 5 6 0 9 4
P e t a l . W i d t h 0 . 5 1 6 2 7 0 7 - 0 . 1 2 1 6 3 9 4 1 . 2 9 5 6 0 9 4 0 . 5 8 1 0 0 6 3
$c e n t e r
S e p a l . L e n g t h S e p a l . W i d t h P e t a l . L e n g t h P e t a l . W i d t h
5 . 8 4 3 3 3 3 3 . 0 5 7 3 3 3 3 . 7 5 8 0 0 0 1 . 1 9 9 3 3 3
$n . obs
[1] 150
$cor
S e p a l . L e n g t h S e p a l . W i d t h P e t a l . L e n g t h P e t a l . W i d t h
S e p a l . L e n g t h 1 . 0 0 0 0 0 0 0 - 0 . 1 1 7 5 6 9 8 0 . 8 7 1 7 5 3 8 0 . 8 1 7 9 4 1 1
S e p a l . W i d t h - 0 . 1 1 7 5 6 9 8 1 . 0 0 0 0 0 0 0 - 0 . 4 2 8 4 4 0 1 - 0 . 3 6 6 1 2 5 9
P e t a l . L e n g t h 0 . 8 7 1 7 5 3 8 - 0 . 4 2 8 4 4 0 1 1 . 0 0 0 0 0 0 0 0 . 9 6 2 8 6 5 4
P e t a l . W i d t h 0 . 8 1 7 9 4 1 1 - 0 . 3 6 6 1 2 5 9 0 . 9 6 2 8 6 5 4 1 . 0 0 0 0 0 0 0
14 / 27

Estadsticas de resumen
Transformaciones lineales
Considere:
y
i
=Axi+b; i= 1; : : : ; n;
dondeA2R
qp
yb2R
p
. Entonces,
y=
1
n
n
X
i=1
y
i
=A
1
n
n
X
i=1
xi+b=Ax+b;
mientras que
y
i
y=Axi+bAxb=A(xix):
De este modo,
SY=
1
n1
n
X
i=1
(y
i
y)(y
i
y)
>
=
1
n1
n
X
i=1
A(xix)(xix)
>
A
>
=
1
n1
A
n
X
i=1
(xix)(xix)
>
A
>
=ASXA
>
:
15 / 27

Estadsticas de resumen
Transformacion de Mahalanobis
En particular, para la transformacion,
zi=S
1=2
(xix); i= 1; : : : ; n;
dondeS=S
1=2
S
1=2
conS
1=2
un S, sigue que
z=0; y SZ=Ip:
Observacion:
En la practica podemos considerar los siguientes metodos para obtenerS
1=2
:
Idescomposicion.
Idescomposicion.
4
4
Este procedimiento no es recomendado.
16 / 27

Estadsticas de resumen
SupongaS>0y considere la
S=UU
>
;
dondeUes matriz ortogonal y= diag(1; : : : ; p)con1 p>0son los
valores propios deS. De este modo podemos considerarS
1=2
=U
1=2
U
>
;
5
con

1=2
= diag(
1=2
1
; : : : ;
1=2
p). Esto lleva a la transformacion
zi=U
1=2
U
>
(xix); i= 1; : : : ; n: (1)
Usando la S=GG
>
, conGmatriz triangular
inferior. En este caso,S
1
= (GG
>
)
1
=G
>
G
1
y hacemos
zi=G
1
(xix); i= 1; : : : ; n: (2)
5
aun otra alternativa es considerarS
1=2
=U
1=2
de ah queS
1=2
=
1=2
U
>
.
17 / 27

Estadsticas de resumen
Observacion:
Si consideramosS=UU
>
y hacemos
y
i
=U
>
(xix); i= 1; : : : ; n: (3)
Entonces, es facil notar que
y=0;
mientras que
SY=U
>
SU=U
>
UU
>
U=:
Ademas,
trSY= tr=
p
X
j=1
j;
jSYj=jj=
p
Y
j=1
j:
La transformacion en.
18 / 27

Estadsticas de resumen
Denicion 1 (Distancia de Mahalanobis):
Considere una muestra denobservacionesx1; : : : ;xn. De este modo, la
Mahalanobis
Di=f(xix)
>
S
1
(xix)g
1=2
; i= 1; : : : ; n;
como la distancia de lai-esima observacion hacia el xponde-
rada por la matriz de covarianza.
Observacion:
Note que las distanciasDipueden ser calculadas de forma bastante eciente usando
(2), como:
Di=f(xix)
>
S
1
(xix)g
1=2
= (z
>
i
zi)
1=2
;
es mas,zies obtenido como solucion del sistemaGzi=xixparai= 1; : : : ; n.
19 / 27

Estadsticas de resumen
Usando
gij= (xix)
>
S
1
(xjx); i; j= 1; : : : ; n:
Mardia (1970)
6
denio medidas de, dadas por
b1p=
1
n
2
n
X
i=1
n
X
j=1
g
3
ij
; b 2p=
1
n
n
X
i=1
g
2
ii
;
respectivamente.
Bajo normalidad, debemos tener:
b1p= 0; b 2p=p(p+ 2):
Observacion:
Las estadsticasb1pyb2pson invariantes bajo transformaciones afn:
y
i
=Axi+b:
6
Biometrika57, 519-530.
20 / 27

Distancia de Mahalanobis: Datos Iris
#
> nobs
> p
>
#
> D2
> s k e w n e s s ( x )
[1] 2 . 6 9 7 2 2
> k u r t o s i s ( x )
[1] 2 3 . 7 3 9 6 6
attr
[1] - 0 . 2 6 0 3 4 2 1
> p
[1] 24
#
>
+ xlab = " C u a n t i l e s teor cos " ,
+ ylab = " D i s t a n c i a s o r d e n a d a s " )
>
21 / 27

Distancia de Mahalanobis: Datos Irisl
l
lll
l
l
lllll
llllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllll
llll
llllllllllllllllll
l
l
ll
l
l
llllllll
ll
l
lll
ll
ll
l
l
l
l
l
ll
lll
ll
ll
l
l
ll
l
l
ll
l
ll
l
l l
l
0 5 10 15
0
2
4
6
8
10
12
Cuantiles teorícos
Distancias ordenadas l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
−2 −1 0 1 2
−3
−2
−1
0
1
2
3
Cuantiles teóricos
Distancias transformadas
22 / 27

Un algoritmo online para calcularxyS(Clarke, 1971)
7
Considere
xn=
1
n
n
X
i=1
xi:
De este modo,
xn=
1
n
n1
X
i=1
xi+xn

=
1
n

(n1)xn1+xn

=
1
n

nxn1xn1+xn

=xn1+
n
n
; (4)
conn=xnxn1.
Ecuacion en
7
Applied Statistics20, 206-209.
23 / 27

Un algoritmo online para calcularxyS(Clarke, 1971)
Sea
Q
n
=
n
X
i=1
(xixn)(xixn)
>
:
Es facil notar que:
Q
n
=Q
n1
+

1
1
n

n
>
n: (5)
conn=xnxn1.
Ecuaciones
24 / 27

Calculo de la varianza muestral. Algoritmo online (1-paso)
8
Algoritmo AS 41:Promedio y matriz de covarianza muestral.
Entrada:Matriz de datosX
>
= (x1; : : : ;xn).
Salida :Promedio y matriz de covarianza,xyS.
1begin
2 M x1
3 Q 0
4 fori= 2tondo
5 xiM
6 M M+
1
i

7 Q Q+

1
1
i


>
8 end
9 x M
10 S
1
n1
Q
11end
8
Algoritmo implementado en la funcion fastmatrix.
25 / 27

Propiedades basicas de los momentos muestrales
Suponga quex1; : : : ;xnson una muestra aleatoria, tal que E(xi) =y
Cov(xi) =. De este modo,
E(x) =
1
n
n
X
i=1
E(xi) =;
mientras que
Cov(x) =
1
n
2
n
X
i=1
Cov(xi) =
1
n
:
Seay
i
=xi, asy=xy E(y
i
) =0, Cov(y
i
) =, parai= 1; : : : ; n.
Ademas
n
X
i=1
(xix)(xix)
>
=
n
X
i=1
(y
i
y)(y
i
y)
>
=
n
X
i=1
y
i
y
>
i
nyy
>
26 / 27

Propiedades basicas de los momentos muestrales
Ahora
E(Q) =
n
X
i=1
E(y
i
y
>
i
)nE(yy
>
)
=
n
X
i=1
Cov(y
i
)nCov(y)
=nn

1
n


= (n1):
Es decir,xySson y, respectivamente.
Observacion:
Evidentemente
b
=
1
n
Q=

n1
n

S;
es un .
27 / 27
Tags