Matematicas avanzadas i 09103

MaestrosOnline3 322 views 10 slides Oct 17, 2014
Slide 1
Slide 1 of 10
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10

About This Presentation

www.maestronline.com

[email protected]


Slide Content

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com




Pide una cotización a nuestros correos.




































Maestros Online
Matemáticas
Avanzadas I

Apoyo en
ejercicios

Servicio de asesorías y solución de ejercicios
[email protected]

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
Actividad integradora 1
Instrucciones:
Resuelve cada uno de los siguientes problemas, para ello es necesario que revises y
comprendas los ejemplos explicados en el material. No olvides incluir todo el
procedimiento necesario para llegar a la respuesta
1. Determina la distancia entre los puntos A y B de cada uno de los incisos
a.
b.
c.
d.
2. Demuestre matemáticamente que la distancia entre el punto A y B es igual que la
distancia entre el punto B y A. ¿Por qué?

3. Realiza las operaciones indicadas para cada uno de los siguientes vectores:

a.
b.
c.
d.
e.
f.
g.
h.
i.
5. Realiza las operaciones indicadas y representa el resultado utilizando los vectores
unitarios canónicos.
a.
b.
c.
6. Considera los siguientes puntos . Encuentra el valor del
punto R.

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
Para que se cumplan las siguientes condiciones:
a.
b.
6. Determina el ángulo entre los vectores de cada uno de los siguientes vectores
a.
b.
c.
7. Determina la proyección de:
a. sobre
b. sobre
c. sobre
8. Determina el producto cruz que se indica para cada par de vectores:
a.
a.
b.
b.
a.
b.
c.
a.
Envía el ejercicio a tu tutor, en formato de práctica de ejercicios

Actividad integradora 2
Instrucciones:
Resuelve cada uno de los siguientes problemas, para ello es necesario que revises y
comprendas los ejemplos explicados en el material. No olvides incluir todo el
procedimiento necesario para llegar a la respuesta
1. Determina las ecuaciones paramétricas de las siguientes funciones vectoriales
a.
b.

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
c.
2. Determina las derivadas de las siguientes funciones
a.
b.
c. Sean las funciones vectoriales

a. Determina
b. Determina
c. Determina
d. Determina
3. Encuentras la recta tangente a cada una de las curvas en el punto descrito:
a.
b.
c.
d.
4. Determina la velocidad y aceleración de cada uno de los siguientes incisos
a.
b.
c.
d.
e.
f.
5. Determina el vector tangente y normal unitario de las siguientes funciones:
a.
b.
c.
d.
e.
6. Encuentra la función longitud de arco para las funciones vectoriales descritas:
a.

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
b.
c.
d.
e.
f.
7. Desarrolla los siguientes ejercicios:
a. Integra la función sobre la trayectoria
para 1
b. Integra la función sobre la trayectoria
para
c. Integral la función sobre la trayectoria de

a. Para
8. Encuentra el trabajo realizado en cada uno de los siguientes ejercicios
a. sobre la curva parametrizada
en el intervalo
b. sobre la curva parametrizada
en el intervalo
c. sobre la curva parametrizada
d. en el intervalo
e. sobre la curva parametrizada
en el intervalo
f. sobre la curva parametrizada
en el intervalo
g. sobre la curva en el
intervalo
Envía la actividad a tu tutor, en formato de práctica de ejercicios

Actividad integradora 3
Instrucciones:

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
Resuelve cada uno de los siguientes problemas, para ello es necesario que revises y
comprendas los ejemplos explicados en el material. No olvides incluir todo el
procedimiento necesario para llegar a la respuesta.
1. Determina el límite de las siguientes funciones
a.
b.
c.
d.
e.
f.
g.
h.
2. Determina las derivadas parciales en el punto dado
a. en el punto
b. en el punto
c. en el punto
d. en el punto
e. en el punto
f. en el punto
3. Determina la diferencia total de los siguientes incisos
a.
b.
c.
d.
e.
4. Encuentra de los siguientes ejercicios

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
a. donde para
b. donde para
c. donde para
d. donde para
e. donde para
5. Determina el vector gradiente de las siguientes funciones:
a.
b.
c.
d.
e.
6. Calcula la derivada direccional mediante la gradiente
a. en el punto en la dirección de
b. en el punto en la dirección de

c. en el punto en la dirección

d. en el punto en la dirección
e. en el punto en la dirección
7. Encuentra una ecuación del plano tangente a:
a. en el punto
b. en el punto
c. en el punto
d. =4 en el punto
e. en el punto
8. Determina los puntos máximos y mínimos de las siguientes funciones
a.
b.
c.
d.

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
e.
Envía la actividad a tu tutor, en formato de práctica de ejercici


Actividad integradora 4
Instrucciones:
1. Demuestra en cada uno de los siguientes ejercicios el teorema de Fubini (realiza
las integrales dobles intercambiando el orden de la integración)
a. y
b. y
c. y
d. y
e. y
f. y
2. Calcula el área bajo las curvas utilizando el concepto de integración doble
a.
b.
c.
d.
e.
3. Calcule las siguientes integrales triples
a.
b.
c.
d.
e.
4. Resuelve las siguientes integrales en coordenadas polares.
a.
b.
c. donde r esta acotada con el eje “x” y la curva
d.

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
e.
5. Evalúa las integrales en coordenadas cilíndricas.
a.
b.
c.
d.
e.
6. Evalúa las siguientes integrales en coordenadas cilíndricas
a.
b.
c.
d.
e.
7. Aplica el teorema de Green para resolver las siguientes integrales
a. donde C es la frontera de la región
comprendida entre
b. donde C es la frontera de la región
comprendida entre
c. donde C es la frontera de la región
comprendida entre
d. donde C es la frontera de la región
comprendida entre
e. donde C es la frontera de la región comprendida
entre
Envía la actividad a tu tutor, en formato de práctica de ejercicios

Instrucciones

Servicio de asesoría y resolución de ejercicios [email protected]
www.maestronline.com
Busca alrededor de tu casa o trabajo un objeto que tenga una forma irregular (un objeto
que se pueda considerar como dos formas juntas, por ejemplo un cilindro y una esfera),
que pueda ser utilizado para almacenar sustancias líquidas o sólidas y realiza lo siguiente:
1. Toma una foto de la superficie que considerarás para tu proyecto.
2. Toma diez medidas de cada lado de la superficie y obtén el promedio de cada
medida.
3. Investiga la capacidad del objeto que estás analizando.
4. Haciendo uso del sistema rectangular en tres dimensiones y utilizando escalas,
dibuja el cuerpo que estas analizando, tratando que la representación sea lo más
real posible, es decir si la superficie tiene un área curva, deberás representarla.
5. Haciendo uso de las técnicas aprendidas en el curso para calcular volúmenes,
establece la función y los límites de integración para encontrar el volumen del
cuerpo que consideraste al inicio del proyecto.
6. Compara el resultado obtenido en la integración y el resultado obtenido mediante
las fórmulas de geometría y justifica a qué se deben los resultados obtenidos.
Entrega tu proyecto final, en formato de desarrollo de proyecto.
Tags