math12722011-11-07-111203212650-phpapp02.pptx

yukansjdb7 9 views 19 slides Sep 12, 2024
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

hgftt gvg vgvgv v vhg


Slide Content

Alternati ng Series Ratio a nd Roo t T e s ts ∞ 11 ( - 1. ) 1 1 1 1 = 1 - 2 + .3 - 4 + 5 · · · ∑ n=1 n=1 An alternating series is a series whose terms are alternately positive and negative. For example:

The Alternating Series Test : If the alternating series satisfies a nd t he n the series is convergent. ( - 1 ) b n = b 1 - b 2 + b 3 - b 4 · · · b n > b n +1 b n Lim b n = ∞ ∑ n=1 n=1 ≤ n ∞

Ex: Test series for convergence. ( - 1 ) n 2. n 3 + 1 ∑ n=1 n=1 ∞

Ex: Test series for convergence . ( - 1 ) n 2. n 3 + 1 = n 3 + 1 > o ∑ ∞ n=1 n=1 b n n 2.

Ex: Test series for convergence . ( - 1 ) n 2. n 3 + 1 = n 3 + 1 > o ∑ ∞ n=1 n=1 b n n 2. Lim b n = 0 ∞ n

Ex: Test series for convergence . ( - 1 ) n 2. n 3 + 1 = n 3 + 1 > o ∑ ∞ n=1 n=1 b n n 2. Lim b n = 0 ∞ n b n decreasing?

Ex: Test series for convergence . ( - 1 ) n 2. n 3 + 1 = n 3 + 1 > o ∑ ∞ n=1 n=1 b n n 2. Lim b n = 0 ∞ n b n decreasing? When n ≥ 2 , it is decreasing (check by derivative)

Ex: Test series for convergence . ( - 1 ) n 2. n 3 + 1 = n 3 + 1 > o ∑ ∞ n=1 n=1 b n n 2. Lim b n = 0 ∞ n b n decreasing? When n ≥ 2 , it is decreasing (check by derivative) ( - 1 ) n 2 n 3 + 1 n=1 ∑ ∞ n=1 So is convergent.

Notice that i s divergen t but i s convergent. convergent if 1 = 1 + 1 1 1 1 2 3 4 5 + + + · · · ( - 1 ) n = 1 - 1 + 1 1 1 2 3 4 + 5 · · · A series is called absolutely | a n | is convergent . I t is called conditionall y convergent if it is C onvergent but | a n | is divergent. ∑ n=1 ∞ 2 ∑ ∞ n=1 n=1 ∑ ∞ n=1 ∑ ∞ n=1 a n ∑ ∞ n=1

Theorem: Absolutely convergent series is convergent. i s convergent because | n 2 | | cos n | < 1 | n 2 | < | cos n | 1 n 2 ∑ n=1 ∞ n 2

Theorem: Absolutely convergent series is convergent. i s convergent because | n 2 | | cos n | < 1 | n 2 | < | cos n | 1 n 2 ∑ n=1 ∞ n 2 Ex: Determine if is convergent. ∑ ∞ n=1 cos n n 2

Theorem: Absolutely convergent series is convergent. i s convergent because | n 2 | | cos n | < 1 | n 2 | < | cos n | 1 n 2 ∑ n=1 ∞ n 2 Ex: Determine if is convergent. ∑ ∞ n=1 cos n n 2 It has both positive and negative terms, but not alternating.

Theorem: Absolutely convergent series is convergent. i s convergent because | n 2 | | cos n | < 1 | n 2 | < | cos n | 1 n 2 ∑ cos n ∞ n 2 Ex: Determine if is convergent. ∑ ∞ n=1 cos n n 2 It has both positive and negative terms, but not alternating. so ∑ ∞ n=1 n 2 is absolutely convergent, n=1

Theorem: Absolutely convergent series is convergent. i s convergent because | n 2 | | cos n | < 1 | n 2 | < | cos n | 1 n 2 ∑ cos n ∞ n 2 Ex: Determine if is convergent. ∑ ∞ n=1 cos n n 2 It has both positive and negative terms, but not alternating. so ∑ ∞ n=1 n 2 is absolutely convergent, n=1

The Ratio Test: If , then the series is absolutely convergent (and thus convergent). If or , then the series is divergent. If , no conclusion can be drawn. a n + 1 a n | a n = L > 1 | = Lim n ∞ = L 1 < ∑ ∞ n=1 Lim n | | a n + 1 a n = ∞ ∑ ∞ n=1 ∞ Lim n ∞ a n + 1 a n | | 1

The Root Test : If is absolutely convergent (and thus convergent). If , then the series is divergent . If | | = L < 1 , then the series | | = 1 , no conclusion can be drawn. Lim √ a n n ∑ n=1 ∞ a n n ∞ Lim n ∞ √ n a n = L > 1 or = ∞ ∑ a n ∞ n=1 Lim n ∞ √ n a n

Ex: Test the series for convergence. n 3 3 n ∑

Ex: Test the series for convergence. 00 L " 3 " = :1 3 " 11\ + 1. 11\ = ( 11\ + 1. ) 3 3 11\ + 1. 3 11\ 1. 11\ + 1. 3 11\ = 3 11\ 3 1. --- 3 So is (absolutely) convergent. 00 L " 3 " = :1 3 "
Tags