MATH3-Lect9.pdffsasasasasasasasasdcldldlc

f202211751 6 views 22 slides Jun 17, 2024
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

maths diffrential


Slide Content

MATHEMATICS-III
Lecture-9
P. DANUMJAYA
Department of Mathematics
BITS-Pilani K K Birla Goa Campus
Finding Particular Solution P. Danumjaya

Finding Particular Solution
by using
The Method of Undetermined Coefficients
Finding Particular Solution P. Danumjaya

Theorem 1
Ifygis the general solution of the differential equation
y
′′
+P(x)y

+Q(x)y=0, (1)
andypis any particular solution of
y
′′
+P(x)y

+Q(x)y=R(x), (2)
thenyg+ypis the general solution of (2).
Finding Particular Solution P. Danumjaya

We consider the linear second order nonhomogeneous
differential equation
y
′′
+a y

+b y=f(x), (3)
wherea,bare constants andf(x)has the form:
f(x) =e
αx
f(x) = αxorcosαxorAsinαx+Bcosβx
f(x) =a0+a1x+· · ·+anx
n
.
Finding Particular Solution P. Danumjaya

Case(i)f(x) =e
αx
Assume thatf(x)has the formf(x) =e
αx
.
Then we have
y
′′
+a y

+b y=e
αx
.
Letyp=Ae
αx
then substituting in the given equation,
we obtain
A=
1
α
2
+aα+b
.
Finding Particular Solution P. Danumjaya

Note
Ifαis a
m
2
+am+b=0,
then we choose
yp=A x e
αx
.
Ifαis a
m
2
+am+b=0,
then we choose
yp=A x
2
e
αx
.
Finding Particular Solution P. Danumjaya

Example 1
Find the general solution of
y
′′
−y=e
3x
.
The general solution is
y(x) =yg(x) +yp(x) =C1e
−x
+C2e
x
+
1
8
e
3x
,
whereC1andC2are any arbitrary constants.
Finding Particular Solution P. Danumjaya

Example 2
Find the general solution of
y
′′
+3y

−4y=e
−4x
.
The general solution is
y(x) =yg(x) +yp(x) =C1e
x
+C2e
−4x

x
5
e
−4x
,
whereC1andC2are any arbitrary constants.
Finding Particular Solution P. Danumjaya

Case(ii)f(x) = sinαx(or)cosαx
Suppose
y
′′
+a y

+b y= sinαx(or)cosαx(or)Msinαx+Ncosαx,
then we choose the particular solution as
yp=Asinαx+Bcosαx.
Ifypsatisfies the homogeneous equation
y
′′
+a y

+b y=0,
then we need to choose
yp=x(Asinαx+Bcosαx).
Finding Particular Solution P. Danumjaya

Case(ii)f(x) = sinαx(or)cosαx
Suppose
y
′′
+a y

+b y= sinαx
(or)cosαx(or)Msinαx+Ncosαx,then we choose the particular solution as
yp=Asinαx+Bcosαx.
Ifypsatisfies the homogeneous equation
y
′′
+a y

+b y=0,
then we need to choose
yp=x(Asinαx+Bcosαx).
Finding Particular Solution P. Danumjaya

Case(ii)f(x) = sinαx(or)cosαx
Suppose
y
′′
+a y

+b y= sinαx
(or)cosαx(or)Msinαx+Ncosαx,then we choose the particular solution as
yp=Asinαx+Bcosαx.
Ifypsatisfies the homogeneous equation
y
′′
+a y

+b y=0,
then we need to choose
yp=x(Asinαx+Bcosαx).
Finding Particular Solution P. Danumjaya

Example 3
Find a particular solution of
y
′′
+4y= cosx,
and hence find a general solution.
Finding Particular Solution P. Danumjaya

Solution
Let
yp(x) =Acosx+Bsinx.
Substituting in the given equation, we find
yp(x) =
1
3
cosx.
The general solution is
y(x) =yg(x) +yp(x) =C1cos2x+C2sin2x+
1
3
cosx,
whereC1andC2are any arbitrary constants.
Finding Particular Solution P. Danumjaya

Example 4
Find the particular solution of
y
′′
+4y= cos2x.
Finding Particular Solution P. Danumjaya

Solution
Let
yp(x) =x(Acos2x+Bsin2x).
Substituting in the given equation, we find
yp(x) =
x
4
sin2x.
Finding Particular Solution P. Danumjaya

Case(iii)f(x) =a0+a1x+a2x
2
+···+anx
n
If
y
′′
+a y

+b y=a0+a1x+a2x
2
+· · ·+anx
n
,
then we choose the particular solution as
yp=A0+A1x+A2x
2
+· · ·+Anx
n
.
Note that ifb=0 x
n−1
as the
highest power ofx.
In this case, we chooseypas
yp=x
ˇ
A0+A1x+A2x
2
+· · ·+Anx
n
ı
.
Finding Particular Solution P. Danumjaya

Example 5
Find the general solution of
y
′′
−y=x
2
+1.
Finding Particular Solution P. Danumjaya

Solution
Let
yp(x) =A0+A1x+A2x
2
.
Substituting in the given equation, we find
yp(x) =−x
2
−3.
The general solution is
y(x) =yg(x) +yp(x) =C1e
x
+C2e
−x
−x
2
−3,
whereC1andC2are any arbitrary constants.
Finding Particular Solution P. Danumjaya

Theorem 2
Ify1(x)andy2(x)are solutions of
y
′′
+P(x)y

+Q(x)y=f1(x),
and
y
′′
+P(x)y

+Q(x)y=f2(x),
respectively, theny1(x) +y2(x)is a solution of
y
′′
+P(x)y

+Q(x)y=f1(x) +f2(x).
Finding Particular Solution P. Danumjaya

Example 6
Find the general solution of
y
′′
+4y=4cos2x+6cosx+8x
2
−4x.
Finding Particular Solution P. Danumjaya

Solution
The general solution is
y(x) =yg(x) +yp(x) =C1cos2x+C2sin2x+xsin2x+2cosx
−1−x+2x
2
,
whereC1andC2are any arbitrary constants.
Finding Particular Solution P. Danumjaya

THANK YOU !
Finding Particular Solution P. Danumjaya
Tags