Maths Class 12 Probability Project Presentation

59,486 views 13 slides Jan 07, 2021
Slide 1
Slide 1 of 13
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13

About This Presentation

Class 12 Maths Presentation on Probability. Mathematics Project Class 12th on Chapter 13 Probability. Project in English. Chapter 13 Up to 2020-21 Revised syllabus up to Baye's Theorem.


Slide Content

Probability
ArwachinBhartiBhawanSr.Sec.School
Aaditya Pandey Class:XII -D

Introduction
Probabilityisthebranchofmathematicsconcerning
numericaldescriptionsofhowlikelyaneventistooccur,
orhowlikelyitisthatapropositionistrue.
Probability=
������??????�??????��??????���������??????���
????????????���������??????�����??????���
Example:Lettherebeabasketwith3balls:Red,Green,
Blue.Ifyouwanttopickaredball,wecancalculatethe
probabilityofpickingaredball.
Totalnumberofpossibilities=3
Totalnumberoffavorablepossibility=1
Therefore,Probabilityofgettingaredball=1/3

Introduction
Terms Related to Probability
Sample Space: Set of all possible outcomes of a random experiment is called Sample space.
It is denoted by S.
Sample Point:Each element of the sample space is called the sample point.
Event: It is the set of favorable outcome.
Mutually Exclusive Events:Two events are said to be mutually exclusive if
there is no common element between them.
Exhaustive Events: The given events are exhaustive if when I take the elements in those
events forms the given sample space.

Conditional Probability
WhenIthrowadice,whatisthe
probabilitythattheoutcomeis3given
thattheoutcomeisodd?
Theansweris1/3astheoddnumbersare
1,3and5.Soweneedtheprobabilityof
gettingthenumber3outofthenumbers
1,3,5.Thechanceisoneoutofthreeso
Theprobabilityis1/3.
Note:ButP(3)=1/6Ifthereisno
condition.Astheprobabilityofgettinga
singlenumbernamed3,outoftotal6
numbersnamely1,2,3,4,5,6
is1/6

Conditional Probability
Definition
ProbabilityofeventEiscalledthe
conditionalprobabilityofFgiventhatEhas
alreadyoccurred,andit'sdefinedbyP(A|B).
Formulaforconditionalprobability,P(A|B)=
�(�∩�)
�(�)

Conditional Probability
Example:InasurveyinaclassitwasfoundthattheprobabilityofastudentwatchingYoutube
videosis0.8.andtheprobabilitythatastudentisbothtopperandalsowatchesYoutubevideos
is0.792.whatistheprobabilitythatastudentisatopperifhewatchesYoutubevideos?
Solution:LetEdenotestheeventthatapersonwatchesYoutubevideos
LetFdenotestheeventthatapersonistopper.
Then,P(E)=probabilitythatapersonwatchesYoutubevideos=0.8
P(E∩F)=probabilitythatoneisbothtopperandalsowatchesYoutubevideos=0.792
andP(F|E)=theprobabilitythatapersonisatopperifhewatchesYoutube
videos
AccordingtoFormulaforconditionalprobability,P(F|E)=P(F∩E)/P(E)
=0.792/0.8=0.99
∴TheprobabilitythatapersonisatopperifhewatchesYoutubevideosis0.99

Conditional Probability
Properties of Conditional Probability
P(S|F)=1
P(F|F)=1
P((A∪B)|F)=P(A|F)+P(B|F)–P((A∩B)|F)
P(E'|F)=1-P(E|F)
Example:EvaluateP(A∪B),if2P(A)=P(B)=5/13andP(A|B)=2/5
Solution:2P(A)=P(B)=5/13
=>P(B)=5/13andP(A)=1/2xP(B)=1/2×5/13=5/26
Now,theformulaofconditionalprobabilityisP(A|B)=P(A∩B)/P(B)
∴2/5=P(A∩B)/P(B)
=>P(A∩B)=2/5XP(B)=2/5×5/13=2/13
Here,theformulaisP(A∪B)=P(A)+P(B)−P(A∩B)
=>P(A∪B)=5/26+5/13-2/13=(5+10−4)/26=11/26

Conditional Probability
Example:IfAandBareeventssuchthatP(A|B)=P(B|A),then
(A)A⊂BbutA≠B
(B)A=B
(C)A∩B=Φ
(D)P(A)=P(B)
Solution:
ButweknowP(A|B)=P(A∩B)/P(B)
andP(B|A)=P(A∩B)/P(A)
sinceP(A|B)=P(B|A)
=>P(A∩B)/P(B)=P(A∩B)/P(A)
=>P(A)=P(B)
Thusthecorrectoptionis(D).

Probability
Multiplication Theorem on Probability
LetEandFbetwoeventsassociatedwithasample
spaceofanexperiment.
Then
P(E∩F)=P(E)P(F|E),P(E)≠0
=P(F)P(E|F),P(F)≠0
IfE,FandGarethreeeventsassociatedwithasample
space,then
P(E∩F∩G)=P(E)P(F|E)P(G|E∩F)

Independent Events
LetEandFbetwoeventsassociatedwithasamplespaceS.Iftheprobabilityofoccurrenceof
oneofthemisnotaffectedbytheoccurrenceoftheother,thenwesaythatthetwoeventsare
independent.Thus,twoeventsEandFwillbeindependent,if
P(F|E)=P(F),providedP(E)≠0
P(E|F)=P(E),providedP(F)≠0
Usingthemultiplicationtheoremonprobability,wehave
P(E∩F)=P(E)P(F)
ThreeeventsA,BandCaresaidtobemutuallyindependentifallthefollowingconditionshold:
P(A∩B)=P(A)P(B)
P(A∩C)=P(A)P(C)
P(B∩C)=P(B)P(C)
P(A∩B∩C)=P(A)P(B)P(C)

Baye’s Theorem
IfE1,E2,...,Enaremutuallyexclusive
andexhaustiveeventsassociated
withasamplespace,andAisany
eventofnonzeroprobability,then
??????(??????
??????|??????)=
??????(??????
??????)??????(??????|??????
??????)
σ??????(??????
??????)??????(??????|??????
??????)

Baye’s Theorem
Example:Abagcontains4redand4blackballs,anotherbagcontains2redand6blackballs.Oneofthe
twobagsisselectedatrandomandaballisdrawnfromthebagwhichisfoundtobered.Findthe
probabilitythattheballisdrawnfromthefirstbag.
Solution:LetE1=theeventofselectingfirstbag.
E2=theeventofselectingsecondbag.
A=theeventofgettingredball.
Sincethereisequalchanceofselectingfirstbagorselectingsecondbag,
P(E1)=P(E2)=1/2
nowP(A|E1)=P(Drawingaredballfromfirstbag)=4/8
andP(A|E2)=P(Drawingaredballfromsecondbag)=2/8=1/4
ProbabilitythatballisdrawnfromthefirstbaggiventhattheballdrawnisredisP(E1|A)
??????(??????1|??????)=
�(�)�(�|�)
�(�)�(�|�)+�(�’)�(�|�’)
=
1
2
×
1
2
(
1
2
×
1
2
+
1
2
×
1
4
)
=
2
3

Probability
Thank You
ArwachinBhartiBhawanSr.Sec.School
Aaditya Pandey Class:XII -D