Matrices and Determinants

SomuSundar4 1,810 views 45 slides Feb 04, 2021
Slide 1
Slide 1 of 45
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45

About This Presentation

Matrices


Slide Content

UNIT 4
Matrices and
Determinants
Mr.T.SOMASUNDARAM
ASSISTANT PROFESSOR
DEPARTMENT OF
MANAGEMENT
KRISTU JAYANTI COLLEGE,
BANGALORE

UNIT 4
MATRICES AND DETERMINANTS
Introduction,Meaning,TypesofMatrices,
Operationsofaddition,subtractionand
Multiplicationoftwomatrices,Problems,
Transposeofsquarematrix,Determinantsof
squarematrix,minorofanelement,cofactorof
anelementofdeterminant,Adjointofasquare
matrix,singularandnon–singularmatrices,
Inverseofasquarematrixsolution,problems
onlinearequations,twovariablesusing
Cramer’srule.

MATRICES -INTRODUCTION
Definition:
“Anarrangement(array)ofnumbers(realorcomplex)
intheformofrowsandcolumnswithinabracketiscalleda
Matrix.”
“Amatrixisasetorgroupofnumbersarrangedina
squareorrectangulararrayenclosedbytwobrackets”.
ThenumbersthatformamatrixarecalledElementsofthe
matrix.
ThematricesaredenotedbycapitalletterA,B,C,……
IfmatrixAhasmrowsandncolumns,thenAiscalledthe
matrixofordermXn.

Properties:
•Aspecifiednumberofrowsandaspecifiednumberof
columns.
•Twonumbers(rowsxcolumns)describethedimensionsor
sizeofthematrix.
Matrixalgebrahasatleasttwoadvantages:
•Reducescomplicatedsystemsofequationstosimple
expressions
•Adaptabletosystematicmethodofmathematicaltreatment
andwellsuitedtocomputers.
(1x2) (2x2) (2x2)11 





03
24 





dc
ba

(E.g.)
is a matrix of order 3 x 3
is a matrix of order 2 x 4
is a matrix of order 1 x 2










333
514
421 




 
2
3
3
3
0
1
0
1 11

Matrices -Introduction
Amatrixisdenotedbyaboldcapitalletterandtheelements
withinthematrixaredenotedbylowercaseletters.
(E.g)matrix[A]withelementsa
ij













mnijmm
nij
inij
aaaa
aaaa
aaaa
21
22221
1211
...
...

i denotes row number which goes from 1 to m
j denotes column number goes from 1 to n
A
mxn=

TYPES OF MATRICES
1.ColumnMatrixorVectorMatrix:
“AmatrixhavingonlyonecolumniscalledaColumn
matrix.Thenumberofrowsmaybeanyintegerbutthe
numberofcolumnsisalways1.”(i.e.)itismatrixofmx1.
(E.g.)
arecolumnmatrices.
(3x1)(2x1)









2
4
1 





3
1 











1
21
11
ma
a
a

2.RowMatrixorVectorMatrix:
“AmatrixhavingonlyonerowiscalledaRowmatrix.
Anynumberofcolumnsbutonlyonerow.”(i.e.)itisamatrix
of1xn.
(E.g.) (1x3) (1x4)
isaRowmatrices.
3.RectangularMatrix:
“Amatrixinwhichthenumberofrowsisnotequalto
thenumberofcolumnsiscalledarectangularmatrix”.
(E.g.)
(4x2) (2x5)
arerectangularmatrices. 611  2530  
n
aaaa
1131211
 












67
77
73
11 





03302
00111 nm

4.SquareMatrix:
“Amatrixinwhichthenumberofrowsequalto
numberofcolumnsiscalledaSquarematrix.”(asquare
matrixAhasanorderofm)
(E.g.) (2x2) (3x3)
isasquarematrices.
5.DiagonalMatrix:
“Asquarematrixinwhichalltheelementsexceptthe
diagonalelementsarezeroiscalledadiagonalmatrix”.
(E.g.)
(3x3) (4x4)
arediagonalmatrices.





03
11 









166
099
111 









100
020
001 











9000
0500
0030
0003

6.UnitorIdentityMatrix:
“Adiagonalmatrixinwhicheachdiagonalentryis
unity,iscalledUnitmatrixoridentitymatrix(I
n).”(i.e.)one
ondiagonalelements.
(E.g.) (2x2) (4x4)
isaidentitymatrices.
7.NullMatrix:
“Amatrixinwhicheachelementiszeroiscalledanull
orazeromatrixanddenotedbyO”.
(E.g.)
(1x3) (3x3)
arenullmatrices.











1000
0100
0010
0001 





10
01 









0
0
0 









000
000
000

8.ScalarMatrix:
“Adiagonalmatrixinwhichallthediagonalelements
areequal,iscalledScalarmatrix.”Ascalarisdefinedasa
singlenumberorconstant.
(E.g.) (3x3) (4x4)
isascalarmatrices.
9.TriangularMatrix:
“Asquarematrixinwhicheachelementbeloworabove
themaindiagonalareallzeroiscalledaTriangularmatrix”.
(E.g.)









100
010
001 











6000
0600
0060
0006 









325
012
001 









325
012
001 









300
610
981

9a.UpperTriangularMatrix:
“Asquarematrixinwhicheachelementbelowthe
maindiagonalareallzeroiscalledaUpperTriangular
matrix”.
(E.g.)
isauppertriangularmatrices.
9b.LowerTriangularMatrix:
“Asquarematrixinwhicheachelementabovethemain
diagonalareallzeroiscalledaLowerTriangularmatrix”.
(E.g.)









325
012
001 









300
810
781 











3000
8700
4710
4471

Problems of Matrices -Addition

Problems of Matrices -Addition

Problems of Matrices -Subtraction

Problems of Matrices -Subtraction

Problems of Matrices –Addition & Subtraction
(Homework problems)

Problems of Matrices -
Multiplication

Problems of Matrices -
Multiplication

Problems of Matrices –Multiplication
(Homework problems)

Equality of Matrices

Equality of Matrices

TransposeofaMatrix:
“ThematrixobtainedfromAbyinterchangingtherows
intocolumnsiscalledthetransposeofamatrixAanditis
denotedbyA
I
(or)A
T
”.
(E.g.)IfA=2-13,thenA
I
=21
124 -12
34
LetAandBaretwomatricesofsameorder,then
i)(A+B)
I
=A
I
+B
I
ii)(A
I
)
I
=A

Transpose of Square Matrix

Transpose of Square Matrix

Transpose of Square Matrix

DeterminantsofaMatrix:
“ToeverysquarematrixAweassociateaunique
numbercalledthedeterminantofthematrixA.The
determinantofsquarematrixAisdenotedA.
(E.g.)IfAisansquarematrixwithordernxn,thenAiscalled
determinantofordern)or)nthorderdeterminant.
EvaluationofDeterminant:
LetA=a
1b
1
a
2b
2be2x2matrix,thenAwillbe
A=a
1b
1=a
1b
2–a
2b
1isvalueofA.
a
2b
2

Letusconsider3x3matrix,thendeterminantofAwillbe–
-multiplyeachelementof1
st
rowbycorresponding
determinantof2
nd
orderbydeletingtherowandcolumnof
thatelement&takeaproductbyaddingsignsalternatively(+,
-).
3x3matrixwithalternativelysignare +-+
-+-
+-+
Properties of Determinant:
1. The value of the determinant remains same if the rows and
columns are interchanged.
2. If two rows (or columns) of a determinant is interchanged,
the value of the determinant changes by a sign.

3. If in a determinant any two rows (or columns) are identical,then
the value of the determinant is zero.
4. If in a determinant the elements of any row (or column) are
multiplied by the same scalar, say k, then the value of new
determinant is k times the given determinant.
5. If in a determinant the elements of any row (or column) is made
up of a sum of two quantities, then the determinant can be
expressed as the sum of two determinants of the same order.
6. If each element of a row (or column) is multiplied by a scalar
and added to the corresponding elements of any other row (or
column), then the value of determinant is unaltered.
7. If in a determinant all the elements of any row (or column) are
zerosthen the value of the determinant is zero.
8. If all the elements on one side of the principal diagonal of a
determinant are zeros, then the value of the determinant is the
product of the elements of the principal diagonal.

Determinants of Matrix

Determinants of Matrix

Determinants of Matrix

Minors, Cofactors & Adjoint of
Matrix

Minors, Cofactors & Ad joint of
Matrix

Ad joint of Matrix

Inverse of a Matrix

Inverse of a Matrix

Minor, Cofactor, Ad joint & Inverse
of a Matrix –Homework problems

Cramer’s Rule

Cramer’s Rule
ExerciseProblems:
1.SolvethefollowingequationsbyCramer’sRule.
2x–3y+1=0,3x+y–1=0
2.SolvethefollowingequationsbyCramer’sRule.
5x –y –4z = 5, 2x + 3y + 5z = 2 & 7x –2y + 6z = 5
3.SolvethefollowingequationsbyCramer’sRule.
4x + y = 7, 3y + 4z = 5 & 3z + 5x = 2

Cramer’s Rule
HomeworkProblems:
1.SolvethefollowingequationsbyCramer’sRule.
5x –y + z = 4, 3x + 2y -5z = 2 & x + 3y –2z = 5
2.SolvethefollowingequationsbyCramer’sRule.
x –y + 2z = 3, 2x + z = 1 & 3x + 2y + z = 4

Application Problems
ExerciseProblems:
1.TherearetwofamiliesAandB.Therearetwomen,
threewomenandonechildinFamilyAandhusband,
wifeand2childreninFamilyB.Thedailyintakeof
caloriesasrecommendedbyW.H.O.ismen–2400,
women–1900andchildren–1800.Forproteinintake
men–55gms,women–45gmsandchildren–33
gms.Usingmatrices,calculatethedailytotal
requirementsofcalories&proteinforeachofthetwo
families.

Application Problems
ExerciseProblems:
2.Asalespersonhasthefollowingrecordofsalesfor
themonthofJanuary,February,March1996forthree
productsA,BandC.heispaidacommissionatfixed
rateperunitbutatvaryingratesforproductsA,Band
C.
FindtherateofcommissionpayableonA,BandC
perunitsold.
Month Sales in Units Commission
(Rs.)
A B C
January 9 10 2 800
February15 5 4 900
March 6 10 3 850

Application Problems
HomeworkProblems:
1.TwofirmsXandY,eachmanufacturetwo
instrumentsPandQ.Thedailyproductionof
instrumentsisasfollows.FirmXproduces2unitsofP
and4unitsofQ.FirmYproduces1unitofPand3
unitsofQ.FirmXworkfor5daysinaweekandY
worksfor6daysinthework.Calculatetheweekly
productionvolume.

End of the Unit 4
Thank You