MBL_Int(1).pdf of mbl fliid mechanicsm of

cp1project25 8 views 25 slides May 27, 2024
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

mBL fluids


Slide Content

ME 2201 Fluid Mechanics
Semester 5
4/26/2023 ME 2201 1

Module V-Incompressible Viscid Flows: Momentum
Boundary Layers
4/26/2023 2ME 2201
•Internal Flows (flow bounded on all sides)
•PhysicalConcepts
•PoiseuilleFlowandCouetteFlow
•PipeFlowsandFrictionFactor

Boundary Layer Theory:
4/26/2023 3
•BL is the thin layer of viscous moving fluid in the immediate vicinity of a
bounding surface (usually termed ‘Wall’).
•Thickness of BL, ??????, is the region of significant viscous flow effects
•MostImpeffectofBLisNoSlipCondition
�=�
??????????????????
@??????=0;
��
�??????
=0
@??????=�;�=0
ME 2201

Boundary Layer Theory:
4/26/2023 4
Flow in a pipe is
Laminar when Re < 2100
Turbulent when Re > 4200
For practical purposes, the critical
value for flow transition is taken to be
Re
crit= 2300
Laminar Flow
Analytical/Numerical
Solutions
Transition Flow
No data
No correlations
Turbulent Flow
Data/Correlations
No Analytical Solution
Eddies/Vortices
ME 2201

4/26/2023 5ME 2201
Ignored for analysisAnalytical Solutions
Hydrodynamic Entrance Length

Poiseuille Flow
4/26/2023 6ME 2201
L >> a
Assumptions:
1.Newtonian and incompressible flow
2.Steady and parallel flow (v=0;
??????
????????????
=0)
3.2D (&#3627408484;=
??????
????????????
=0)

Poiseuille Flow
4/26/2023 7ME 2201
??????&#3627408477;
??????&#3627408485;
=??????
??????
2
&#3627408482;
??????&#3627408486;
2
@&#3627408486;=±ℎ;&#3627408482;=0
@&#3627408486;=0;
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=0
steady No gravity
in horizontal
direction
2DparallelContinuity 2DContinuity
Applying double integration to governing equation

Couette Flow
4/26/2023 8ME 2201
Assumptions:
1.Newtonian and incompressible flow
2.Parallel and Steady flow (v=0;
??????
????????????
=0)
3.2D (&#3627408484;=
??????
????????????
=0)
4.p = constant
steady No gravity
in horizontal
direction
2Dparallel 2DContinuityP= constContinuity

Couette Flow
0=??????
??????
2
&#3627408482;
??????&#3627408486;
2
@&#3627408486;=+ℎ;&#3627408482;=??????
@&#3627408486;=−ℎ;&#3627408482;=0
Applying double integration to governing equation
Applying BC
Shear Stress Volume Flow rate
&#3627408452;=න
−ℎ

&#3627408482;&#3627408473;&#3627408465;&#3627408486;
Depth &#3627408473;in &#3627408487;−&#3627408465;????????????
4/26/2023 ME 2201 9

Poiseuille Flow –Cont’d
4/26/2023 10ME 2201

Couette Flow
4/26/2023 11ME 307 ME 2201
Twoimmisciblefluidsarecontainedbetweeninfiniteparallelplates.
Theplatesareseparatedbydistance2h,andthetwofluidlayersare
ofequalthicknessh:thedynamicviscosityoftheupperfluidisthree
timesthatofthelowerfluid.Ifthelowerplateisstationaryandthe
upperplatemovesatconstantspeedU=6.1m/s,whatisthevelocity
attheinterface?Assumelaminarflows,andthatthepressure
gradientinthedirectionofflowiszero.

Poiseuille Flow –Pipe
4/26/2023 12ME 2201
Continuity in cylindrical coordinates
&#3627408487;−&#3627408474;&#3627408476;&#3627408474;&#3627408466;&#3627408475;&#3627408481;&#3627408482;&#3627408474;in cylindrical coordinates
Assumptions:
1.Newtonian and incompressible flow
2.Parallel flow (&#3627408483;
??????=0)
3.Steady flow (
??????
????????????
=0)
4.2D (&#3627408483;
??????=
??????
????????????
=0)
[2] [4]
[Fully developed
flow]
[3]
[2] [4] [continuity]
[4] [continuity]
[horizontal
direction]
Integrating twice

Poiseuille Flow –Pipe
Hagen-Poiseuille
Equation

Poiseuille Flow –Pipe
4/26/2023 14ME 2201

Friction Factor–Pipe
4/26/2023 15ME 2201
??????
1>??????
2
&#3627408466;=&#3627408482;+
??????
2
2
+??????&#3627408487;
Rate of change
within CV
Energy flux
passing thru. CS
Mass flow rateEnthalpyTotal energy

4/26/2023 ME 2201 16
Introducing correction factor that helps
convert local velocity to average velocity
Resubstituting
Re-arranging
Heat
Transfer
Change in
thermal energy
Head form
Energy form

4/26/2023 17ME 2201

4/26/2023 18ME 2201
For const area and const elevation
For Laminar Flow:
For turbulent Flow:

4/26/2023 19ME 2201
Int Flow -Minor Loss

4/26/2023 20ME 2201
Int Flow -Minor Loss

Int Flow –Head Loss, Pipe Flow Problems
4/26/2023 21ME 2201

4/26/2023 22ME 2201

Int Flow –Head Loss, Pipe Flow Problems
4/26/2023 23ME 2201

4/26/2023 24ME 2201

Int Flow –Head Loss, Pipe Flow Problems
4/26/2023 25ME 2201
Tags