Chapter 7.
Iterative Solutions of Systems
ofEquations of
Equations
EFLUM –ENAC ‐EPFL
Contents Contents
1
Introduction
1
.
Introduction
2. First example: Scalar Equation 3
iliffi
3
.Iterat
ive so
lut
ions o
f
a system o
f
equat
ions:
Jacobi iteration method
4. Iterative methods for finite difference
equations: Back to problem 6.3
5. The Successive Over Relaxation (SOR)
Introduction: The fixed
p
oint iteration Introduction: The fixed
p
oint iteration
p p
Previous Method (used on previous class) Uses Gaussian Elimination (or “\” in MatLab)
Introduction: The fixed
p
oint iteration Introduction: The fixed
p
oint iteration
p p
(
)
1
kk
xgx
=
Themainconcept: Themainconcept:
(
)
1
kk
xgx
+
The
main
concept: The
main
concept:
Example: Example:
36x=26xx
+
=
1
3
2
k
k
x
x
+
=
−+
4
X
=4
2.5
3
3.5
4
fx
n
X
0
=
4 1
1.5
2
Value of
X
0
= 1
0
1
2
3
4
5
6
7
8
9
10
0
0.5
Iteration step
X
0
= 0
Introduction: The fixed
p
oint iteration Introduction: The fixed
p
oint iteration
p p
Theproofofconvergence: Theproofofconvergence:
1
3
k
k
x
x
=
−
+
The
proof
of
convergence: The
proof
of
convergence:
1
3
2
k
x
+
+
(
)
12
112 3
=
+
(
)
Introduction: The fixed
p
oint iteration Introduction: The fixed
p
oint iteration
p p
FirstIterationmethod: FirstIterationmethod: 36x=
26xx+=
1
3
2
k
k
x
x
+
=
−+
First
Iteration
method: First
Iteration
method:
G li dit ti th d G li dit ti th d
2
Always Converges Always Converges
36x=G
enera
li
ze
d
it
era
ti
on me
th
o
d
:
G
enera
li
ze
d
it
era
ti
on me
th
o
d
:
(3 ) 6xx
α
α
−+=
1
36
kk
xx
α
αα
+
−
=
−+
Converges? Converges?
αα
Introduction: The fixed
p
oint iteration Introduction: The fixed
p
oint iteration
p p
36Generalized iteration method: Generalized iteration method:
(3 ) 6
36
xx
α
−
+
36
x=
(3 ) 6
xx
α
α
−+=
Converges? Converges?
1kk
xx
α
α
+
=
−
+
No No
Yes Yes
1
X: 1.5 Y1
mber
0.60.8
Y
:
1
teration num
0.20.4
ude of the it
1
2
3
4
5
6
7
8
9
10
0
0.2
value of the splitting parameter
α
magnitu
X: 3
Y: 0
Introduction: The fixed
p
oint iteration Introduction: The fixed
p
oint iteration
p p
Generalized iteration method: Generalized iteration method:
36
α
−
1kk
xx
α
α
+
=− +
How fast does it Converges? How fast does it Converges?
The smaller
this value is
The fastest is
468
α = 1.42 α = 1.5 α = 2.0 α = 2.5 α = 3.0
40
the convergence
02
value of x
n
α
=
4
.0
α = 5.0
0
1
2
3
4
5
6
7
8
9
10
-4-2
Iteration Step
Iterative solution of a s
y
stem of e
q
uations Iterative solution of a s
y
stem of e
q
uations
yq yq
Jacobi interaction Jacobi interaction approach approach
Consider the problem
D: Diagonal elements of A
L: Lower elements of A
+U: Upper elements of A
L+U: Matrix B
andand
1 Q
<
Iterative solution of a s
y
stem of e
q
uations Iterative solution of a s
y
stem of e
q
uations
yq yq
Some notes about the vector norm Some notes about the vector norm
The vector norm calculation
Stbtthti Stbtthti S
ome no
t
es a
b
ou
t
th
e ma
t
r
i
x norm
S
ome no
t
es a
b
ou
t
th
e ma
t
r
i
x norm
The matrix norm calculation
Iterative solution of a s
y
stem of e
q
uations Iterative solution of a s
y
stem of e
q
uations
yq yq
Back to
p
roblem 6.3
(
1 Back to
p
roblem 6.3
(
1°°case case
– –
last class
)
last class
)
p( p(
) )
Back to Laplace Equation (Last class example)
M_diag=sparse(1:21,1:21,-4,21,21);
L_diag1=sparse(2:21,1:20,1,21,21);
L_diag2=sparse(8:21,1:14,1,21,21);
L_diag1(8,7)=0; L_diag1(15,14)=0;
A M di +L di 1+L di 2+L di 1'+L di 2' A
=
M
_
di
ag
+L
_
di
ag
1+L
_
di
ag
2+L
_
di
ag
1'+L
_
di
ag
2'
;
b=zeros(21,1); b(7)=-100; b(14)=-100; b(21)=-100;
convcrit
=
1e9;
L=L_diag1+L_diag2 U=L‘
;
iteration matrix is Q=-Dinv*LnU
convcrit 1e9; h_old=ones(21,1);
kount=0;
whileconvcrit>1e-3 % loop ends when fractional
kount=kount+1; % change in h < 10
-3
;
LnU=L+U;
Dinv=inv(M_diag) %D
-1
h=Q*h_old+Dinv*b;
convcrit=max(abs(h-h_old)./h);
h_old=h;
end
Iterative solution of a s
y
stem of e
q
uations Iterative solution of a s
y
stem of e
q
uations
yq yq convcrit=1e9;
h_old=ones(21,1);
kount=0; kount=0; whileconvcrit>1e-3 % loop ends when fractional
kount=kount+1; % change in h < 10
-3
h=Q*h_old+Dinv*b;
convcrit=max(abs(h-h_old)./h);
h_old=h;
end
Successive over relaxation metho
d
Successive over relaxation metho
d
Before Before NowNow
Jacobi iteration approach Jacobi iteration approach
ρ
(
Q
)
= abs
(
max
(
ei
g
(
Q
)))
ρ
(
Q
)
((
g
(
Q
)))
Successive Order Relaxation Method Successive Order Relaxation Method
(SOR) (SOR)
S(ω): Iteration matrix.
ρ(Q): Magnitude of the largest eigenvalue of the
Jacobi iteration matrix.
ω
opt
: Iteration parameter, chosen to accelerate
convergence
Iterative solution of a s
y
stem of e
q
uations Iterative solution of a s
y
stem of e
q
uations
yq yq
it 1 9
wopt=2/(1+sqrt(1-(normest(Q))^2));
y=inv(D*(1/wopt)+L);
S=-y*(U+(1-(1/wopt))*D);
it 1 9
convcr
it
=
1
e
9
;
h_old=ones(21,1);
kount=0;
whileconvcrit > 1e-3
kount=kount+1;
convcr
it
=
1
e
9
;
h_old=ones(21,1);
kount=0;
whileconvcrit > 1e-3
kount=kount+1;
h=Q*h_old+Dinv*b; convcrit=max(abs(h-h_old)./h); h_old=h;
end
h=S*h_old+y*b;
convcrit=max(abs(h-h_old)./h);
h_old=h;
end
FastFast☺ ☺ Slow Slow / /