Metodo adams bashforth

9,943 views 7 slides Dec 15, 2011
Slide 1
Slide 1 of 7
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7

About This Presentation

No description available for this slideshow.


Slide Content

1
1
Los métodos de euler, Heun, Taylor y Runge-Kutta se llaman método de un paso
porque en el cálculo de cada punto sólo se usa la información del último punto.
Los métodos multipaso utiliza la información de los puntos previos, a saber,
y
i
, y
i-1
,..., y
i-m+1
para calcular y
i+1
. Por ejemplo, en un método de tres pasos para
calcular y
i+1
, se necesita conocer y
i
, y
i-1
, y
i-2
.
METODOS MULTIPASOS
El principio que subyace en un método multipaso es utilizar los valores previos para
construir un polinomio interpolante que aproxime a la función f(t,y(t)).
El número de valores previos considerados para determinar el polinomio interpolante
nos determina el grado del polinomio. Por ejemplo, si se consideran tres puntos previos,
el polinomio de aproximación es cuadrático; si se usan cuatro puntos previos, el
polinomio es cúbico.
2
METODOS DE ADAMS
Los métodos de Adams son métodos multipasos. Los métodos de Adams se pueden
clasificar en dos grandes clases: los métodos de Adams-Bashforthy los
métodos de Adams-Moulton. Estos se pueden combinar para formar los métodos
predictor-corrector de Adams-Bashforth-Moulton.
La idea fundamental del método de Adams-Bashforth de n pasos es usar un
polinomio de interpolación de f(t,y(t)) que pasa por los n puntos:
( t
i
,f
i
)
La idea fundamental del método de Adams-Moulton de n pasos es usar un
polinomio de interpolación de f(t,y(t)) que pasa por los n+1 puntos:
(t
i+1
,f
i+1
)
, (t
i-1
,f
i-1
),..., (t
i-n+1
,f
i-n+1
).
, (t
i
,f
i
),..., (t
i-n +1
,f
i-n+1
).

2
3
Ahora, aproximaremos f(t,y(t)) mediante el polinomio de interpolación que pasa por los
puntos: (t
i
, f
i
),(t
i-1
,f
i-1
), donde f
i-1
= f(t
i-1
,y(t
i-1
)); fi = f(t
i
,y(t
i
)).
El polinomio interpolante esta dado por:
P(t) = ( (t
i
–t ) f
i-1
+ ( t - t
i-1
) f
i
) / h, reemplazando este polinomio en la expresión (1):
Ejemplo1 Deducir el método de Adams-Bashforth de dos pasos para resolver la
E.D.O. y' = f(t,y)
4
métodos de Adams-Bashforth de 3 pasos:
métodos de Adams-Bashforth de 4 pasos:
De acuerdo a la tabla mostrada obtenemos:
métodos de Adams-Bashforth de 2 pasos:

3
5
Ejemplo 2. Deducir el método de Adams-Moulton de un pasopara resolver la E.D.O.
y' = f(t,y)
Ahora, aproximaremos f(t,y(t)) mediante el polinomio de interpolación que pasa por los
puntos: (t
i+1
, f
i+1
),(t
i
,f
i
) , donde f
i
= f(t
i
,y(t
i
)); f
i+1
= f(t
i+1
, y(t
i+1
)).
El polinomio interpolante esta dado por:P(t) = ( (t
i+1
–t ) f
i
+ ( t – t
i
) f
i+1
) / h,
reemplazando este polinomio en la expresión (1):
Sol: y' = f(t, y)  dt
t
t
))t(y,t(fdt
1i
i
1i
i
t
t
)t('y




y
i+1
= y
i
+

1i
i
t
t
dt))t(y,t(f
(1)
i+1 i i+1 i
(f + f )
2
h
y y+
i+1
i
t
i+1 i
t
y y+P(t)dt 
6
De acuerdo a la tabla mostrada obtenemos:
métodos de Adams-Moulton de 2 pasos: y
i+1
=y
i
+h (5 f
i+1
+ 8 f
i
-f
i-1
)/ 12
métodos de Adams-Moulton de 3 pasos: y
i+1
=y
i
+ h (9 f
i+1
+ 19 f
i
-5f
i-1
+ f
i-2
) /24
NOTA. Los métodos de A-B de n pasosson de orden n
Los métodos de A-M de n pasosson de orden (n+1)

4
7
METODOS PREDICTOR-CORRECTOR
En la práctica los métodos multipaso implícitos (por ejemplo:el método de A-M) ,
no se puede usar directamente. Estos métodos sirven para mejorar las aproximaciones
obtenidas con los métodos explícitos.
La combinación de un método explícito con un método implícito del mismo orden se
denomina un método predictor-corrector.
Método Predictor Corrector de cuarto orden de Adams- Bashforth- Moulton
*
1i
La fórmula predictora es la de Adams-Bashforth: y = y
i
+ h(55 f
i
– 59 f
i-1
+37 f
i-2
-9 f
i-3
)/24,
La fórmula correctora es la de Adams-Moulton: y
i+1
= y
i
+ h (9 f +19 f
i
-5 f
i-1
+ f
i-2
)/24;
donde: f
i
= f (t
i
,y
i
); f
i-1
= f (t
i-1
,y
i-1
); f
i-2
= f (t
i-2
,y
i-2
); f
i-3
= f (t
i-3
,y
i-3
); f = f (t
i+1
, y ) ;
*
1i
*
1i
Observación Para usar la fórmula predictora se requiere que se conozcan los valores
y
0
, y
1
, y
2
, y
3
, para obtener y
4
. Sabemos que y
0
es la condición inicial dada
y como el método de A-B-M es deorden4, los valores y
1
, y
2
, y
3
se suelen
calcular con un método de igual orden, es decir de orden 4, como el método
de Runge Kutta de orden 4.
*
1i
8
Ejemplo: Usar el método de Adams-Bashforth-Moulton de cuarto orden con una
longitud de paso de 0.2 para obtener una aproximación a y(1) de la solución
de: y’= t + y -1, y(0) = 1.
Solución: Identificando: f(t,y)= t + y –1; t0 = 0; y0 = 1; h = 0.2
con RK clásico de orden 4
y
i+ 1
= y
i
+h (k
1
+ 2k
2
+2k
3
)/6
INICIALIZACION
Método Predictor Corrector de cuarto orden de Adams- Bashforth- Moulton
Predictor Adams-Bashforth: y = y
i
+ h(55 f
i
– 59 f
i-1
+37 f
i-2
-9 f
i-3
)/24,
Corrector de Adams-Moulton: y
i+1
= y
i
+ (9 f +19 f
i
-5 f
i-1
+ f
i-2
)/24;
donde: f
i
= f (t
i
,y
i
); f
i-1
= f (t
i-1
,y
i-1
); f
i-2
= f (t
i-2
,y
i-2
); f
i-3
= f (t
i-3
,y
i-3
); f = f (t
i+1
, y );
*
1i
*
1i
*
1i

5
9
INICIALIZACION DE con RK clásico de orden 4
y
i+ 1
= y
i
+h (k
1
+ 2k
2
+2k
3
)/6
Iteración1:
k
1
= f(t
0
;y
0
)= f(0;1)= 0+ 1 -1 = 0
k
2
= f(t
0
+h/2;y
0
+h k
1
/2) = f(0.1;1+ 0.2 k
1
/2) =f(0.1,1)= 0.1
k
3
= f(t
0
+h/2;y
0
+h k
2
/2) = f(0.1;1+ 0.2 k
2
/2)=0.11
k
4
= f(t
0
+h,y
0
+ h k
3
) = f(0.2;1+ 0.2 k
3
)=0.222
y
1
= y
0
+h(k
1
+ 2k
2
+2k
3
+ k
4
)/6
y
1
= 1+0.2(0+ 20.1+2 0.11+0.222)/6 = 1.0214
t
1
= t 0 + h = 0.2
10
Iteración2:
k
1
= f(t
1
,y
1
)= f(0.2; 1.0214 ) = 0.2214
k
2
= f(t
1
+h/2,y
1
+hk
1
/2)=f(0.3; 1.04354)=0.34354
k
3
= f(t
1
+h/2,y
1
+h k
2
/2) f(0.3; 1.05575)=0.35574
k
4
= f(t
1
+h,y
1
+ hk
3
) =f(0.4; 1.09255) = 0.492551
y
2
= y
1
+h(k
1
+ 2k
2
+2k
3
+ k
4
)/6
y
2
=1.0214+ 0.2(0.2214+20.34354+2 0.35574+ 0.492551) /6
= 1.09182
t
2
= t
1
+ h = 0.4
Iteración3:
k
1
= f(t
2
,y
2
)= f(0.4, 1.09182 ) = 0.491818
k
2
= f(t
2
+h/2,y
2
+hk
1
/2)=f(0.5, 1.141)=0.641
k
3
= f(t
2
+h/2,y
2
+h k
2
/2) f(0.5, 1.15592)=0.655918
k
4
= f(t
2
+h,y
2
+ hk
3
) =f(0.6, 1.223) = 0.823002
y
3
= y
2
+h(k
1
+ 2k
2
+2k
3
+ k
4
)/6
y
3
=1.09182+0.2 (0.491818+20.641+2 0.655918+ 0.823002) /6
= 1.22211
t
3
= t
2
+ h = 0.6

6
11
Método Predictor Corrector de cuarto orden de Adams- Bashforth- Moulton
Predictor Adams-Bashforth: y = y
i
+ h(55 f
i
– 59 f
i-1
+37 f
i-2
-9 f
i-3
)/24,
Corrector de Adams-Moulton: y
i+1
= y
i
+ (9 f +19 f
i
-5 f
i-1
+ f
i-2
)/24;
donde: f
i
= f (t
i
,y
i
); f
i-1
= f (t
i-1
,y
i-1
); f
i-2
= f (t
i-2
,y
i-2
); f
i-3
= f (t
i-3
,y
i-3
); f = f (t
i+1
, y )
*
1i
*
1i
*
1i
Iteración4:
y = y
3
+ h(55 f
3
– 59 f
2
+37 f
1
-9 f
0
)/24
f
0
=f(t
0
;y
0
)= f(0;1)= 0 + 1 -1 = 0 ;
f
1
=f(t
1
;y
1
)= f(0.2;1.0214)= 0.2214
f
2
=f(t
2
;y
2
)= f(0.4;1.09182)= 0.49182
f
3
=f(t
3
;y
3
)= f(0.6; 1.22211)= 0.82211
*
4
y
4
= y
3
+ h(9 f +19 f
3
-5 f
2
+ f
1
)/24; donde: f = f (t
4
; y )= f(0.8; 1.42536) =1.22536
y = y
3
+h (55 f
3
– 59 f
2
+37 f
1
-9 f
0
)/24
= 1.22211+(55 0.82211–590.49182 + 370.2214 -90)0.2/24
=1.42536
*
4
*
4
*
4
*
4
*
1i
*
1i
12
y
4
= 1.22211+ (91.22536+190.82211-50.48182 + 0.2214)0.2/24
= 1.42553
t
4
= t
3
+ h = 0.8
Iteración5:
y = y
4
+ (55 f
4
– 59 f
3
+37 f
2
-9 f
1
) h/24
f
1
=f(t
1
;y
1
)= 0.2214; f
2
=f(t
2
;y
2
)= 0.49182; f
3
=f(t
3
;y
3
)= 0.82211
f
4
=f(t
4
;y
4
)= f(0.8; 1.42553)= 1.22536
y = 1.42553+(55 1.22536–590.82211 + 370.49182-90.2214) 0.2/24
=1.71806
y
5
= y
4
+ (9 f +19 f
4
-5 f
3
+ f
2
) h/24; donde: f = f (t
5
; y )= f(1; 1.71806) =1.71806
y
5
= 1.42553+ (91.71806+191.22536-50.82211+ 0.49182) 0.2 /24
= 1.71827
t
5
= t
4
+ h = 1
Por lo tanto, y(1) y
5
= 1.71827
*
5
*
5
*
5
*
5
*
5

7
13
Tabla Comparativa del método de Método Predictor Corrector de cuarto orden de
Adams- Bashforth- Moulton, con el método Runge Kutta de orden 4 clásico, en la
solución de la ecuación y’ = t + y -1, con y( 0 ) = 1, en el intervalo [0,1]
tA -B-M orden4 RK4 yHexactaL
0. 1. 1 1
0.2 1.0214 1.0214 1.0214
0.4 1.09182 1.09182 1.09182
0.6 1.22211 1.22211 1.22212
0.8 1.42553 1.42552 1.42554
1. 1.71827 1.71825 1.71828
Tags