Metric Relationships
Showings Proofs and
Logical Thinking in Math
Proofs
This topic deals with showing
logical steps as you try to
determine a length or angle in a
triangle or circle.
You may use the handout.
Many of the concepts you
already know.
Congruency and Similarity
Only if we can prove that two
triangles are congruent or
similar by (ASA, SAS, etc),
can we then determine the
lengths and angles of the
corresponding sides.
Angle Bisector Theorem
In any triangle, the bisector of an angle
divides the opposite side into 2 segments
whose lengths are proportional those of
the adjacent sides.
BD:DC = AB:AC
Activity
Page 273, Q. 1, 5a,b, 10
Pythagorean Theory
In a right triangle, the square of the
hypotenuse is equal to the sum of
the squares of the other 2 sides.
c
2
= a
2
+ b
2
Corollary to Pythagorean
Theorem
IF the square of the length of
the longest side of a triangle
IS equal to the sum of the
squares of the lengths of the
other 2 sides, THEN it is a
right triangle.
Right Triangle Area
The area of a triangle is
A = bh
2
In a right triangle you can
usually find this 2 ways.
Products of the Sides
In a right triangle, the product of the
length of the sides is equal to the product
of the lengths of the hypotenuse and its
altitude.
ABxAC= BCxAD
2 2
ABxAC = BCxAD
or bh = BH
Geometric Mean
The geometric mean of 2
numbers is the square root of
their product.
E.g. 4, 9….4x9 = 36
So the geometric mean is √36
Which is 6.
Altitude to the Hypotenuse
Theorem
The length of the altitude to
the hypotenuse of a right
triangle is the geometric
mean between the lengths
of the segments into which
the altitude divides the
hypotenuse.
m
2
= 3x7
Projection of a side
A projection of a
side of a triangle
onto another side
is similar to pushing
one side vertically
down onto another
line.
Proportional Mean Theorem
In a right triangle, each side is
the geometric mean between
the hypotenuse and that
side’s projection on the
hypotenuse.
30˚ Theorem
If a right triangle contains a 30˚ angle, the
side opposite the 30˚ angle is ½ the
length of the hypotenuse.
Median Theorem
In a right triangle, the length of the
median to the hypotenuse is equal to ½
the length of the hypotenuse.
Exam Question
ABC is a right triangle in which segment AD measures 10 cm and segment DC, 25 cm.
A
B
C
D
10 cm 25 cm
What is the measure of segment AB, to the nearest tenth?
A)
15.8 cm
C)
22.5 cm
B)
18.7 cm
D)
29.6 cm
Exam QuestionGiven the right triangle to the right.
AB
C
a
b
h
nm
c
Which of the following relations is true?
A)
a b = m n
C)
h = m n
B)
a + b = c
D)
a
2
= m c
Exam QuestionABC is a right triangle in which segment AD measures 5 cm and segment DC, 10 cm.
A
B
C
D
5 cm 10 cm
What is the measure of segment BD, to the nearest tenth?