MIT dft pdf for students. this has the pdf of dft.

MayankTiwari239531 14 views 39 slides May 28, 2024
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

This has the pdf of dft


Slide Content

3.320: Lecture 5 (Feb 15 2005)
THE MANY THE MANY
--
BODY PROBLEM BODY PROBLEM
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

When is a particle like a wave ? Wavelength •
m
omentum = Planck

λ
•p
=
h
( h = 6.6 x 10
-34
J s )
)
,
(
t
rr
Ψ
=
Ψ
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Time-dependent Schrödinger’s equation
(Newton’s 2
nd
law for quantum objects)
t
t
r
i
t
r
t
r
V
t
r
m

Ψ

=
Ψ
+
Ψ


)
,
(
)
,
(
)
,
(
)
,
(
2
2
2
r
h
r
r
r
h
1925-onwards: E. Schrödinger (wave equation), W. Heisenberg (matrix formulation), P.A.M. Dirac
(relativistic)
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Stationary Schrödinger’s Equation (I)
t
t
r
i
t
r
t
r
V
t
r
m

Ψ

=
Ψ
+
Ψ


)
,
(
)
,
(
)
,
(
)
,
(
2
2
2
r
h
r
r
r
h
*
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Stationary Schrödinger’s Equation (II)
)
(
)
(
t
f
E
t
f
dtd
i
=
h
)
(
)
(
)
(
2
2
2
r
E
r
r
V
m
r
r
r
h
ϕ
ϕ
=
⎥⎦⎤
⎢⎣⎡
+


Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

)
(
)
(
t
f
E
t
f
dtd
i
=
h
⎟⎠⎞
⎜⎝⎛

=
t
E
i
t
f
h
exp
)
(
Free particle
Ψ
(x,t)=
φ
(x)f(t)
)
(
)
(
2
2
2
x
E
x
m
ϕ
ϕ
=


h
⎟⎟⎠⎞
⎜⎜⎝⎛
=
x
mE
i
x
h
2
exp
)
(
ϕ
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Interpretation of the Quantum Wavefunction (Copenhagen)
2
(,
)
xt
Ψ
is the probability of finding an electron
in
x
and
t
2
2
(
)
e
xp(
)
(
)
i
xE
t
x
ϕϕ
−=
h
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

A Traveling “Plane”
W
ave
(,
)
e
x
p
[
(
)
]
xt
i
k
x
t
ω
Ψ∝

Diagram of plane wave removed for copyright reasons.
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Metal Surfaces (I)
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Metal Surfaces (II)
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Infinite Square Well
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari
1
6
1
4
1
2
1
0 8 6 4 2 0
n
=
1
n
=
2
n
=
3
n
=
4
-
a
0
a
x
y
1
y
2
y
3
y
4
y
(
x
)
8
m
a
2
p
2
h
2
E
Figure by MIT OCW.

Finite Square Well
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari
a
y
2
(
x
)
a
y
3
(
x
)
a
y
4
(
x
)
a
y
1
(
x
) 1
-
1
1
0
.
5
-
0
.
5
-
2
-
1
2

x
/
a
0
1
-
1
1
0
.
5
-
2
-
1
2

x
/
a
0
1
-
1
1
0
.
5
-
2
-
1
2
0
1
-
1
1
-
2
-
1
2

x
/
a

x
/
a
0
Figure by MIT OCW.

A Central Potential (e.g. the Nucleus)
22
2
2
22
22
2
ˆ
()
2
HV
r
mx
y
z

∂∂
=−

+

=
+
+

∂∂
h
2
2
2
22
2
2
2
11
1
ˆ
sin
(
)
2s
i
n
s
i
n
H
rV
r
mr
r
r
r
r
ϑ
ϑϑ
ϑ
ϑ
ϕ
⎡⎤
∂∂



⎛⎞


=−
+
+
+
⎢⎜




∂∂



⎝⎠


⎣⎦
h
)
,
(
)
(
)
(
ϕ
ϑ
ψ
lm
Elm
Elm
Y
r
R
r
=
r
22
2
22
2(
1
)
()
()
()
22
El
El
dd
l
l
Vr
R
r
E
R
r
m
d
r
r
dr
r
µ
⎡⎤
⎛⎞
+
−+
+
+
=
⎢⎥
⎜⎟⎝⎠
⎣⎦
hh
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Solutions in a Coulomb Potential:
the Periodic Table
http://www.orbitals.com/orb/orbtable.htm
Court
e
sy of Da
vi
d
Manthey. Used wi
th permi
s
sion.
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari
___________________________________________________________ _

Orthogonality, Expectation Values,
and Dirac’s
<
bra|kets>
ψ
ψ
ψ
=
=
)
(
rr
ij
j
i
j
i
r
d
r
r
δ
ψ
ψ
ψ
ψ
=
=

r
r
r
)
(
)
(
*
i
i
i
i
i
E
H
r
d
r
r
V
m
r
=
=
⎥⎦⎤
⎢⎣⎡
+


ψ
ψ
ψ
ψ
ˆ
)
(
)
(
2
)
(
2
*
r
r
r
h
r
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Matrix Formulation (I)
ψ
ψ
ψ
ψ
E
H
r
E
r
H
=

=
ˆ
)
(
)
(
ˆ
r
r
{
}
functions
orthogonal
k
,
1
n
k
n
n
n
c
ϕ
ϕ
ψ

=
=
ψ
ϕ
ψ
ϕ
m
m
E
H
=
ˆ
m
n
k
n
m
n
Ec
H
c
=

=
ϕ
ϕ
ˆ
,
1
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Matrix Formulation (II)
m
n
m
k
n
n
Ec
H
c
=

=
ϕ
ϕ
ˆ
,
1
m
k
n
n
mn
Ec
c
H
=

=
,
1
⎟⎟⎟⎟⎟⎟ ⎠⎞
⎜⎜⎜⎜⎜⎜ ⎝⎛
=
⎟⎟⎟⎟⎟⎟ ⎠⎞
⎜⎜⎜⎜⎜⎜ ⎝⎛

⎟⎟⎟⎟⎟⎟ ⎠⎞
⎜⎜⎜⎜⎜⎜ ⎝⎛
k
k
kk
k
k
cc
E
cc
H
H
H
H
...
...
......
.
.
.
.
.
.
......
1
1
1
1
11
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Variational
P
rinciple
[]
ˆ
||
|
H
E
<
ΦΦ
>
Φ=
<
ΦΦ
>
If , then
Φ
is the ground
state wavefunction, and viceversa…
[]
0
EE
Φ≥
[]
0
EE
Φ= Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Energy of an Hydrogen Atom
ˆ
H
E
α
α
α
αα
Ψ
Ψ
=
ΨΨ
(
)
exp
Cr
α
α
Ψ=

22
2
2
3
2
11
,
22
CC
C
r
αα
α
α
α
α
ππ
π
α
αα
Ψ
Ψ
=
Ψ


Ψ=
Ψ

Ψ=

Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Two-electron atom
)
,
(
)
,
(
|
|
1
21
21
2
1
2
1
2
1
2
1
22
21
r
r
E
r
r
r
r
rZ
rZ
el
r
r
r
r
r
r
ψ
ψ
=
⎥⎦⎤
⎢⎣⎡

+






Many-electron atom
2
11
11
(
,
...,
)
(
,
...,
)
2|
|
in
e
l
n
ii
i
j
i
ii
j
Z
rr
E
r
r
rr
r
ψψ
>
⎡⎤
−∇

+
=
⎢⎥

⎢⎥⎣⎦
∑∑


rr
rr
rr
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Energy of a collection of atoms
N
e
N
N
e
e
N
e
V
V
V
T
T
H



+
+
+
+
=
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
•T
e
: quantum kinetic energy of the electrons
•V
e-
e
: electron-electron interactions
•V
N-N
: electrostatic nucleus-nucleus repulsion
•V
e-N
: electrostatic electron-nucleus attraction
(electrons in the field of all the nuclei)
()
∑∑
∑∑

>



=
⎥⎦⎤
⎢⎣⎡

=


=
ii
j
j
i
e
e
ii
I
i
I
N
e
i
e
r
r
V
r
R
V
V
T
|
|
1
ˆ
ˆ
21
ˆ
2
r
r
r
r
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Electrons and Nuclei
)
,...,
,
,...,
(
)
,...,
,
,...,
(
ˆ
1
1
1
1
N
n
tot
N
n
R
R
r
r
E
R
R
r
r
H
r
r
r
r
r
r
r
r
ψ
ψ
=
•We treat only the electrons as
quantum particles, in the
field of the fixed (or slowly varying) nuclei •This is generically called the
adiabatic
or
Born-
Oppenheimer
approximation
•Adiabatic means that there is no coupling between different electronic surfaces; B-O no influence of the ionic motion on one electronic surface.
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Complexity of the many-body
Ψ
“…Some form of approximation is essential, and this would mean the construction of tables. The tabulation function of one variable requires a page, of two variables a volume and of three variables a library; but the full specification of a single wave function of neutral iron is a function of 78 variables. It would
b
e
rather crude to restrict to 10 the number of values of each variable at which to tabulate th
is function, but even so, full
tabulation would require 10
78
entries.”
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Mean-field approach

I
ndependent particle model
(Hartree): each
electron moves in an
effective potential
,
representing the attraction of the nuclei and the
average effect
of the repulsive
interactions of the other electrons

T
his average repulsion is the electrostatic
repulsion of the average charge density of all other electrons
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Hartree
Equations
The Hartree
e
quations can be obtained directly from the variational
principle, once the search is restricted to the many-body wavefunctions that are written as the product of single orbitals
(i.e.
we are working with independent electrons)
)
(
)
(
)
(
)
,...,
(
2
2
1
1
1
n
n
n
r
r
r
r
r
r
L
r
r
r
r
ϕ
ϕ
ϕ
ψ
=
)
(
)
(
|
|
1
|
)
(
|
)
(
21
2
2
i
i
i
i
j
I
i
j
i
j
j
j
i
I
i
r
r
r
d
r
r
r
r
R
V
r
r
r
r
r
r
r
r
ϕ
ε
ϕ
ϕ
=
⎥⎥⎦⎤
⎢⎢⎣⎡

+

+


∑∑


Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

The self-consistent field

T
he single-particle Hartree
operator is self-
consistent ! I.e., it depends in itself on the orbitals
that are the solution of all other
Hartree
e
quations

W
e have
n
simultaneous integro-differential
equations for the
n
orbitals

S
olution is achieved iteratively
)
(
)
(
|
|
1
|
)
(
|
)
(
21
2
2
i
i
i
i
j
I
i
j
i
j
j
j
i
I
i
r
r
r
d
r
r
r
r
R
V
r
r
r
r
r
r
r
r
ϕ
ε
ϕ
ϕ
=
⎥⎥⎦⎤
⎢⎢⎣⎡

+

+


∑∑


Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Iterations to self-consistency

I
nitial guess at the orbitals

Construction of all the operators

S
olution of the single-particle pseudo-
Schrodinger
equations

W
ith this new set of orbitals, construct the
Hartree
operators again

I
terate the procedure until it (hopefully)
converges
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Differential Analyzer
Vann
evar
Bush and th
e Differen
t
ial Analyzer.
Court
e
sy of the MIT

Mu
seum. Used
wi
th permission.
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

What’s missing

I
t does not include correlation

T
he wavefunction is not antisymmetric

I
t does remove
nl
accidental degeneracy of
the hydrogenoid
a
toms
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Spin-Statistics

A
ll elementary particles are either
fermions
(half-integer spins) or
bosons
(integer)

A
set of identical (indistinguishable)
fermions has a wavefunction that is antisymmetric
by exchange

F
or bosons it is symmetric
)
,...,
,...,
,...,
,
(
)
,...,
,...,
,...,
,
(
2
1
2
1
n
j
k
n
k
j
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
ψ
ψ

=
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Slater determinant

A
n antisymmetric
w
avefunction is constructed via a
Slater determinant of the individual orbitals
(instead
of just a product, as in the Hartree
a
pproach)
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
!
1
)
,...,
,
(
2
2
2
1
1
1
2
1
n
n
n
n
r
r
r
r
r
r
r
r
r
n
r
r
r
r
L
r
r
M
O
M
M
r
L
r
r
r
L
r
r
r
r
r
ν
β
α
ν
β
α
ν
β
α
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ψ
=
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Pauli
p
rinciple

If two states are identical, the determinant vanishes (i.e. we can’t have two electrons in the same quantum state)
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Hartree-Fock
Equations
The Hartree-Fock
equations are, again, obta
ined from the variational
p
rinciple: we
look for the minimum of the
many-electron Schroedinger
e
quation in the class of all
wavefunctions that are written as
a single Slater determinant
)
(
)
(
)
(
|
|
1
)
(
)
(
)
(
|
|
1
)
(
)
(
)
(
21
*
*
2
i
i
j
j
i
j
j
i
j
j
i
j
j
i
i
I
I
i
r
r
r
d
r
r
r
r
r
r
d
r
r
r
r
r
r
R
V
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
λ
µ
µ
λ
µ
λ
µ
µ
µ
λ
ϕ
ε
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
=
⎥⎥⎦⎤
⎢⎢⎣⎡


⎥⎥⎦⎤
⎢⎢⎣⎡

+
⎥⎦⎤
⎢⎣⎡

+







Slater
r
r
n
=
)
,...,
(
1
r
r
ψ
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Shell structure of atoms

S
elf-interaction free

G
ood for atomic properties

S
tart higher-order perturbation theory

E
xchange is in, correlation still out
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Faster, or better

T
he exchange integrals are the hidden cost
(fourth power). Linear-scaling efforts underway

S
emi-empirical methods (ZDO, NDDO,
INDO, CNDO, MINDO): neglect certain multi-center integrals

Configuration interaction, M
ǿ
ller-Plesset
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Restricted vs. Unrestricted

S
pinorbitals
i
n the Slater determinant:
spatial orbital times a spin function

U
nrestricted: different orbitals
for different
spins

R
estricted: same orbital part
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Koopmans’
T
heorems

T
otal energy is invariant under unitary
transformations

I
t is not the sum of the canonical MO orbital
energies

I
onization energy, electron affinity are
given by the eigenvalue
o
f the respective
MO, in the frozen orbitals
approximation
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Atomic Units and Conversion Factors
(see handout)
1 a.u. = 2 Ry
= 1 Ha
1 Ry
= 13.6057 eV
1 eV
= 23.05 kcal/mol
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari

Software

G
aussian (
http://www.gaussian.com
)

C
rystal (
http://www.cse.clrc.ac.uk/cmg/CRYSTAL/
,
http://www.theochem.unito.it/
)
References

F
. Jensen,
Introduction to Computational Chemistry

J
. M. Thijssen,
Computational Physics

B
. H. Bransden
and C. J. Joachim,
Quantum
Mechanics,
and also
Physics of Atoms and Molecules
Feb 15 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari
Tags