mixotrophy in cyanobacteria: a dual nutritional strategy

MansiBishnoi1 64 views 40 slides May 22, 2024
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

Cyanobacteria (also known as blue-green algae) are ubiquitous photosynthetic microorganisms found in diverse habitats such as fresh water, marine water, moist rocks, etc. The photosynthetic mode of nutrition makes them significant global oxygen producers along with nitrogen-fixing ability of heteroc...


Slide Content

CCS Haryana Agricultural
UniversityAgriculture is
supreme wealth
Mixotrophy in Cyanobacteria
Mansi
Ph.D. Scholar
2022BS23D
Credit seminar 692

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 2
1.Cyanobacteria and their types
2.Cell structure and reproductive mode
3.Photoautotrophyvs heterotrophy
4.Mixotrophy: a dual mode of nutrition
5.Mechanism of mixotrophy
6.Factors affecting mixotrophy in cyanobacteria
7.Biotechnological applications of mixotrophic cyanobacteria
8.Current understanding and future directions
9.Conclusion
Flow of content

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Cyanobacteria?
3
Nostoc sp.
Oscillotoria sp.
Spirulina sp.
Gleotrichia sp.
Anaebina sp.
•CyanobacteriaareGramnegative,aerobic,photoautotrophic
prokaryoteshavingsizerangesfrom1-10µm
•Originatedover2.5billionyearsagoandarebelievedtobeoneofthe
firstorganismstoperformoxygenicphotosynthesis
•Ubiquitousinexistenceandoftenfoundinalltypesofenvironment-
freshwater,marinewater,moistrock,etc.
•Capableofnitrogen-fixationandcarbonsequestration
•Useschlorophyll-basedlightharvestingcomplex
•Chlorophylla,phycocyaninandphycoerythrinarethephotosynthetic
pigmentspresentincyanobacteria
•Keep‘Cyanophyceanstarch’asreservesfoodmaterial
•Knowntoreleasesoxygenanduseswateraselectron-donori.e.splits
watermoleculetoreleaseoxygen

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 4
Single-celled, having
mucilaginous sheath
Examples: Chroococcussp.
Single cell colonizes and form
multicellular colonies
Examples: Gleocapsasp.
Form chain covered with
mucilaginous sheath. It
consists of: Heterocyst and
Akinetes
Examples: Nostocsp.,
Oscillatoriasp. etc.
FilamentousColonialUnicellular
Types of cyanobacteria

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 5Norena-Caro & Benton (2018)
Fig 1. Cell structure of cyanobacteria

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 66
Vegetative reproduction Asexual reproduction
Binary fission
Fragmentation
Hormogones
Formation of separator disc
Exospores
Endospores
Akinetes
Hormocyst
Hormospores
Vegetative cell
Constriction
Cell enlargement
and formation of
“constriction”
Two identical
individuals
Hormogonia
Mucilaginous
sheath
Gelatinous
material occupies
between the cell
Thick wall
Hormospores
Heterocyst covered
by thick wall
Germination Growth of
new individual
Akinete
Endospores
Exospores
Fig 2. Reproductive modes in cyanobacteria

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 7
O
2+ 2NADPH + 3ATP
Light-dependent reactions
2H
2O + 2NADP
+
+ 3ADP + 3Pi
O
2+ 2NADPH + 3ATP
Light-independent reactions
(Calvin cycle)
3CO
2+ 9ATP + 6NADPH + 6H
+
G3P + 9ADP + 8Pi + 6NADP
+
+ 3H
2O
Romanowska& Dębowska(2022)
Fig 3. Photoautotrophy vs heterotrophy

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 8
Fig 4. Photosynthesis in cyanobacteria
Selãoet al. (2020)

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Mixotrophy: A dual mode of nutrition
9
•Mixotrophyreferstotheabilityofcyanobacteriatoobtainenergyandnutrients
throughbothphotosynthesisandheterotrophicmeans,e.g.absorbingorganic
compoundsfromenvironmentinthepresenceoflight
•Alsoincludestheacquisitionofmoleculescontainingnitrogen,phosphorus,trace
elements,vitaminsandhigh-energycompounds
•Providescompetitiveadvantage,enhancingtheiradaptabilityandsurvivalin
dynamicecosystems
•Mixotrophiccyanobacteriaplaycrucialrolesinaquaticandterrestrial
ecosystemsbycontributingtoprimaryproduction,nutrientcyclingand
ecosystemstability

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Mechanism of mixotrophy
10
Thereareseveralstrategiesthatmakephototrophsadaptvariousenvironmentalconditions,suchas,
•Morphologicaladaptationsthatprovidelongtermviabilityduringlowlightperiodsincluding
precipitationofcalciumcarbonatecrystalsincellmembrane,glycans,UV-absorbingpigmentsand
waterstressproteinsinextracellularmatrix.e.g.,Scytonemasp.
•Modificationsinphotosyntheticapparatus
•Changesinthequantityofpigmentsandassociatedpigmentformingproteinstoincreaseproton
captureefficiencyinlowlight
•PhysiologicaladaptationsandtheentiresetofenzymesinvolvedintheOxidativePentose
Phosphatepathway(OPP),glycolysisandCalvincycle
•Presenceofmembranetransportersofsimpleorganiccompounds
•glcH:encodesforhighaffinityglucosetransporter
•proX:encodesforglucine-betainetransporter
•pmgA:encodingaputativeregulatoryprotein(controlscarbonpartitioningbetweentheCalvin
cycleandOPPpathway)

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 11
Fig 5. Changes in enzymes
involved in glucose metabolism in
Synechococcussp. strain WH8102
under light and dark conditions.
Thestrategiesutilizedby
cyanobacteriatometabolize
organiccompoundsuchas
glucose,showsunexpectedlinks
tootherpathways.
(Moreno-Cabezueloet al. 2023)
Metabolic flow upon
glucose addition

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Table 1: Examples of mixotrophic cyanobacteria
12
Cyanobacteria General characteristics
GloeobacterviolaceusPerforms both photosynthesis and utilize organic carbon sources when
available
Synechococcus
elongatus
Capable of utilizing organic carbon sources such as glucose in addition to
photosynthesis
Anabaena variabilisAbility to fix atmospheric nitrogen and utilize organic carbon sources also
Cyanothecespp. Utilizes organic carbon sources in addition to photosynthesis, particularly in
low light conditions
ChlorogloeafritschiiUtilizes organic carbon sources in addition to photosynthesis
Spirulina subsalsa Primarily relies on photosynthesis, under certain conditions it has been
observed to exhibit mixotrophic behavior, utilizing organic carbon sources for
growth
AulosirafertilissimaUtilizes both organic carbon sources and photosynthesis for growth

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 13
Carbon
Dioxide
Concentration
pHTemperature
Nutrient
Availability
(Nitrogen,
Phosphorus
and Organic
Carbon
Sources)
Light
Availability
(Light
Intensity and
Light Quality)
Environmental factors affecting mixotrophic cyanobacteria

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Applications of mixotrophic cyanobacteria
14
Fig 6. Potential applications of cyanobacterial biomass
Vu et al. (2020)

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 15
Waste water
Bioremediation
Low cost inputs, limited
maintenance & eco-
friendly
Mixotrophic nature
Nitrogen fixation, plant
growth promotion, soil
stability & highly efficient
By products
Easy biomass separation
Cyanobacteria
Liquid fuel & bio-methane
High value products
High cost inputs, regular
maintenance & cause
toxicity
Heterotrophic nature
Release toxic gases, causes
anaerobic conditions & less
efficient
By products
Typical biomass separation
Other microbes
Singh et al. (2019)
Fig 7. Advantages of cyanobacteria over other microbes in wastewater treatment

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 16
Fig 8. Conceptual model for cyanobacterial mediated remediation of heavy metals
(a) Adsorption by extracellular cell
associated materials
(b) Absorption and accumulation inside
the cell
Singh et al. (2019)

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Table 2: Cyanoremediation of heavy metals
17
Heavy metal Cyanobacteria References
Cd Nostoc linckia, Nostocrivularis, Tolypothrixtenuis El-Enanyand Issa (2000)
Co Nostoc muscorum, Anabaena subcylindrica EI-Sheekhet al. (2012)
Cr Nostoc calcicole, Chroococussp. Anjana et al. (2007)
Cu Nostoc muscorum, Anabaena subcylindrica EI-Sheekhet al. (2012)
Mn Nostoc muscorum, Anabaena subcylindrica EI-Sheekhet al. (2012)
Pb Nostoc muscorum, Anabaena subcylindrica, Gloeocapsasp.EI-Sheekhet al. (2012)
Zn Nostoc linckia, Nostoc rivularis El-Enanyand Issa (2000)
Ni Nostoc sp. EI-Sheekhet al. (2012)
Singh et al. (2019)

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Elham Ghorbani, Bahareh Nowruzi, Masoumeh Nezhadali and Azadeh Hekmat
18
BMC Microbiology, 2022
Highlights:
1.ComparingNostocsp.N27P72andNostocsp.FB71,maltosesupplementationsignificantly
boostsEPSproductionandcelldryweight,withNostocsp.N27P72showingnotablyhigh
levels
2.Thecultures,assessedforCu(II),Cr(III)andNi(II)removal,demonstrateenhancedmetal
absorptionwithmaltoseasacarbonsource,potentiallyduetoincreasedEPS,proteinand
carbohydrateproduction
3.GasChromatography-MassSpectrometry(GC–MS)analysisofNostocsp.N27P72revealsa
strongNi(II)removalcapacity
Metal removal capability of two cyanobacterial species in autotrophic
and mixotrophic mode of nutrition

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Methodology
19
Collection of Nostocsp. (N27P72 and FB71)
Growth of cultureon BG11 medium + maltose, lactose, sucrose,
glucose (10g/L) separately
Determination of cell biomass after 6, 12, 24, 36 and 48 h
Isolation of exopolysaccharides
Heavy metal removal (Cu (II), Cr (III) and Ni (II)), total
EPS, total soluble proteins, carbohydrate content, chemical
composition of solution were analyzed

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 20
Fig 9. EPS production and cell dry weight of Nostoc sp. N27P72 cultivated in media culture (A) without additional
sugars as a control (B) media culture containing (10 g/L) maltose (C) lactose (D) sucrose(E) Glucose
Results
Symbols indicate
●Cell dry weight (g/L)
■Total EPS concentration (μg/mL)
▲Sugar concentration (g/L) in the media

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 21
Fig 10. EPS production and cell dry weight of Nostoc sp. FB71 cultivated in media culture without additional sugars as (A)
control (B) media culture containing (10 g/L) maltose (C) lactose (D) sucrose(E) Glucose
Symbols indicate
●Cell dry weight (g/L)
■Total EPS concentration (μg/mL)
▲Sugar concentration (g/L) in the media

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 22
Fig 11. Time course of specific metal removal (q) by (A) Nostoc sp. N27P72 (B) Nostoc sp. FB71cultivated in media
culture containing (10 g/L) maltose, with copper, chromium and nickel (10 mg/L) in single-metal solutions

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 23
Fig 12. Comparison of the total produced (a)
EPSs (μg/mL), (b)Protein (mg/mL) and (c)
Carbohydrates (μg/mL)of Nostoc sp. N27P72
and Nostoc sp. FB71 in lyophilized EPSs
containing maltose and metal solution of Cu (II),
Cr (III) and Ni (II)

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Table 3: Chemical composition of Nostoc sp. N27P72 (control) extracts as revealed by
Gas Chromatography Mass Spectrophotometry (GC–MS)
24
Name of Compound
Molecular
Formula
Molecular
weight
Nature of the compound
RT
(Mins)
Area %
2-Ethoxyethanol C
4H
10O
2 90.12 Hydroxy ether 8.77 83%
Phenol, 2,4-bis-(1,1-
dimethylethyl)
C
17H
30OSi 278.5 Phenolic ester 26.2996%
Dodecane, 2,6,10-trimethyl C
15H
32 212.41 Alkane 26.4164%
3,3-dimethylhexane C
8H
18 114.23 Alkane 27.1540%
Undecane C
11H
24 156.31 Alkane 28 78%
Hydroxylamine, O-decyl C
10H
23 173.2957 Alkane 29.7578%
Tetradecane C
14H
30 198.39 Alkane 29.9559%
Nonadecane C
19H
40 268.5 Alkane hydrocarbon30.2083%
Propionic acid CH
3CH
2CO
2H 74.08 Organic acid 30.6635%
Dotriacontane C
32H
66 450.8664 Alkane 30.6864%
Eicosane C
20H
42 282.5 Alkane 31.6983%
2-Methyldecane C
11H
24 156.31 Alkane 31.9953%

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Table 4: Chemical composition of Nostoc sp. N27P72 (Ni(II)) extracts as revealed by
Gas Chromatography Mass Spectrophotometry (GC–MS)
25
Name of Compound Molecular
Formula
Molecular
weight
Nature of the compoundRT Area %
Pyran C
5H
6O 82.1 Six-membered heterocyclic11.55 49%
Cyclotrisiloxane H
6O
3Si
3 138.3 Heterocyclic compound12.02 90%
Cyclotrisiloxane H
6O
3Si
3 138.3 Heterocyclic compound15.97 91%
Cyclotrisiloxane H
6O
3Si
3 138.3 Heterocyclic compound19.62 91%
Cyclotrisiloxane H
6O
3Si
3 138.3 Heterocyclic compound23.22 91%
1,2-Benzenedicarboxylic acid C
8H
6O
4 166.1308 Quinoline Ester 23.51 90%
1,2-Benzenedicarboxylic acid C
8H
6O
4 166.1308 Quinoline Ester 24.01 91%
1,2-Benzenedicarboxylic acid C
8H
6O
4 166.1308 Quinoline Ester 24.13 91%
1,2-Benzenedicarboxylic acid C
8H
6O
4 166.1308 Quinoline Ester 24.35 91%
1,2-Benzenedicarboxylic acid C
8H
6O
4 166.1308 Quinoline Ester 24.55 91%
1,2-Benzenedicarboxylic acid C
8H
6O
4 166.1308 Quinoline Ester 24.63 91%

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Enhancing biodiesel production in Anabaena sphaericaMBDU 105: exploring
photo-, hetero-and mixotrophic cultivation for biomass, lipid and fuel
properties
Antonyraj Matharasi Perianaika Anahas, Nainangu Prasannabalaji and Gangatharan Muralitharan
Highlights:
•Highlipid-yieldingstrainAnabaenasphaericaMBDU105evidencedappropriatenessforbiodieselproduction
wasselectedtoupliftbiomassandlipidproductionunderthreedifferentmodes
•Biomassproduction,lipidyield,pigment,biomoleculesandfuelqualitywerestudied
•Exogenousadditionofglucoseinmediasignificantlyincreasedbiomassproductivityby8.6timesand5.6times
inmixotrophiccomparedtophotoautotrophicandheterotrophicmodes,respectively
•MixotrophiccultivationofAnabaena105resultedinthehighestlipidproductivityof31.64mg/L/dayandlipid
contentof39.21%dwt,withamaximumpalmiticacidconcentrationof59.88–76.25%suitableforbiodiesel
production
•Studydemonstratesthatmixotrophiccultivation,utilizingglucose,canenhancelipidcontent,fuelqualityand
economicviabilityofbiodiesel,includinghighcetanenumbers,lowunsaturationandexcellentlubricity,
contributingtoefficientengineperformanceandreducedemissions
26
Biomass Conversion and Bioenergy, 2024

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Methodology
27
Anabaena sphaericaMBDU 105 was cultivated @5% with
BG-11 medium under three different modes
Measurement of growth rate and biomass productivity
Effect of glucose on pigments under different modes were
analyzed
Biochemical analysis of total protein, total lipid content and
fatty acid analysis
Biodiesel quality was estimated

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 28
Fig 13. Specific growth rate of Anabaena105 grown under (a) mixotrophic (b) heterotrophic conditions
Results

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 29
Fig 14. Chlorophyll a synthesis of Anabaena105 grown under (a) mixotrophic (b) heterotrophic conditions
3.383 mg/g
0.713 mg/g
0.658 mg/g

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 30
Fig 15. Carotenoid productivity of Anabaena105 grown under (a) mixotrophic (b) heterotrophic conditions
0.0012 mg/g
0.00026 mg/g

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 31
Fig 16. Phycocyanin production of Anabaena105 grown under (a) mixotrophic (b) heterotrophic conditions
0.022 mg/g
0.015 mg/g

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 32
Fig 17. Total protein content of Anabaena105 grown under (a) mixotrophic (b) heterotrophic conditions
0.039 mg/g
0.045 mg/g

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 33
Fig 18. Effect of organic carbon source on saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and
polyunsaturated fatty acids (PUFA) concentration in Anabaena105

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Table 5: Effect of glucose on the relative percentage of FAME (% w/w) of the total FAME
composition of Anabaena 105 grown under the photoautotrophic and mixotrophic mode
34
Fatty acids
Fatty acid composition (% w/w)
Mixotrophic mode
Photoautotrophic
mode
BG-11
Glucose
(1 g/L)
Glucose
(2 g/L)
Glucose
(3 g/L)
Glucose
(4 g/L)
Glucose
(5 g/L)
Glucose
(6 g/L)
(Control)
Palmitic
acid
59.886 62.532 64.311 66.048 73.027 76.252 25.23
Palmitoleic
acid
0.463 0.553 0.308 0.493 0.305 0.640 0.72
Stearic acid0.132 0.112 0.952 1.538 2.894 0.707 0.89
Oleic acid0.300 0.314 0.175 0.166 1.232 0.203 0.79

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 35
Cyanobacterial
strains+BG-11
Cetane
Number
Iodine Value
(g /biodiesel
100g )
Cold Filter
Plugging
Point (°C)
Cloud
Point (°C)
Viscosity
(mm
2
/s)
Density
(g m-3)
Oxidation
stability
Biodiesel Standard IS
15607
≥ 51 ≤120 ≤5/-20 3.0-12 3.5–5.0 0.86–0.90 ≥ 6
Photoautotrophic mode 62.85 32.51 5.76 8.28 2.89 0.88 5.69
Mixotrophic mode
Glucose (1 g/L)
59.35 54.97 5.82 27.89 4.06 0.88 5.98
Glucose (2 g/L) 61.93 44.6 15.86 28.8a3 3.44 0.88 6.75
Glucose (3 g/L) 62.06 37.81 22.08 29.74 3.44 0.87 6.85
Glucose (4 g/L) 62.93 38.52 50.86 33.42 4.49 0.88 7.27
Glucose (5 g/L) 66.33 20.93 42.55 35.11 4.06 0.86 6.73
Glucose (6 g/L) 66.18 25.48 5.75 8.27 3.63 0.88 6.58
Table 6: Biodiesel properties of Anabaena 105 grown under the photoautotrophic and
mixotrophic mode of cultivation

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 36
Current understanding and future directions

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth 37

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Conclusion
38

CCS Haryana Agricultural
UniversityAgriculture is supreme wealth
Everything else can wait,
agriculturecan’t.
-Norman
Borlaug
Thank you
CCSHAU is a member of the ICAR

CCS Haryana Agricultural University, Hisar Agriculture is supreme wealth
Bibliography
•Anahas,A.M.P.,Prasannabalaji,N.,&Muralitharan,G.(2024).EnhancingbiodieselproductioninAnabaenasphaericaMBDU105:exploringphoto-,
hetero-,andmixotrophiccultivationforbiomass,lipid,andfuelproperties.BiomassConversionandBiorefinery,1-20.
•delCarmenMuñoz-Marín,M.,López-Lozano,A.,Moreno-Cabezuelo,J.Á.,Díez,J.,&García-Fernández,J.M.(2024).Mixotrophyin
cyanobacteria.CurrentOpinioninMicrobiology,78,102432.
•Ghorbani,E.,Nowruzi,B.,Nezhadali,M.,&Hekmat,A.(2022).Metalremovalcapabilityoftwocyanobacterialspeciesinautotrophicand
mixotrophicmodeofnutrition.BMCmicrobiology,22(1),58.
•Kim,S.M.,Bae,E.H.,Kim,J.Y.,Kang,J.S.,&Choi,Y.E.(2022).MixotrophicCultivationofaNativeCyanobacterium,Pseudanabaenamucicola
GO0704,toProducePhycobiliproteinandBiodiesel.Journalofmicrobiologyandbiotechnology,32(10),1325.
•Moreno-Cabezuelo,J.Á.,Gómez-Baena,G.,Díez,J.,&García-Fernández,J.M.(2023).IntegratedProteomicandMetabolomicAnalysesShow
DifferentialEffectsofGlucoseAvailabilityinMarineSynechococcusandProchlorococcus.MicrobiologySpectrum,11(2),e03275-22.
•Norena-Caro,D.,&Benton,M.G.(2018).Cyanobacteriaasphotoautotrophicbiofactoriesofhigh-valuechemicals.JournalofCO2Utilization,28,
335-366.
•Romanowska,E.,&Wasilewska-Dębowska,W.(2022).Light-DependentReactionsofPhotosynthesisinMesophyllandBundleSheathChloroplasts
ofC4PlantMaize.HowOurViewsHaveChangedinRecentYears.ActaSocietatisBotanicorumPoloniae,91.
•Selão,T.T.,Jebarani,J.,Ismail,N.A.,Norling,B.,&Nixon,P.J.(2020).EnhancedproductionofD-lactateincyanobacteriabyre-routing
photosyntheticcyclicandpseudo-cyclicelectronflow.Frontiersinplantscience,10,498215.
•Singh,J.S.,Kumar,A.,&Singh,M.(2019).Cyanobacteria:asustainableandcommercialbio-resourceinproductionofbio-fertilizerandbio-fuel
fromwastewaters.EnvironmentalandSustainabilityIndicators,3,100008.
•Stebegg,R.,Schmetterer,G.,&Rompel,A.(2023).Heterotrophyamongcyanobacteria.ACSomega,8(37),33098-33114.
•Vu,H.P.,Nguyen,L.N.,Zdarta,J.,Nga,T.T.,&Nghiem,L.D.(2020).Blue-greenalgaeinsurfacewater:problemsandopportunities.Current
pollutionreports,6,105-122.
40