Modelamiento estadistico de las precipitaciones de series temporales.ppt

OmarDS1 7 views 20 slides Jul 31, 2024
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

analalitica descriptiva


Slide Content

Statistical modelling of precipitation time series
including probability assessments of extreme events
Silke Trömel and Christian-D. Schönwiese
Institute for Atmosphere and Environment
J. W. Goethe University
Frankfurt/M., Germany

Gaussian assumptions

Statistical modelling of climate time series
Parameter P1(t):
Trends
Annual cycle
Episodic component
Modell: Gaussian distribution

Statistical modelling of climate time series
Parameter P1(t):
Trends
Annual cycle
Episodic component
Parameter P2(t):
Trends
Constant annual cycle
Modell: Gaussian distribution

Statistical modelling of climate time series
Parameter P1(t):
Trends
Annual cycle
Episodic component
Parameter P2(t):
Trends
Constant annual cycle
Modell: Gumbel distribution

Statistical modelling of climate time series
Parameter P1(t):
Trends
Annual cycle
Episodic component
Parameter P2(t):
Trends
Constant annual cycle
Modell: Gumbel distribution

Statistical modelling of climate time series
Parameter P1(t):
Trends
Annual cycle
Episodic component
Parameter P2(t):
Trends
Constant annual cycle
Modell: Weibull distribution

Statistical modelling of climate time series
Parameter P1(t):
Trends
Annual cycle
Episodic component
Parameter P2(t):
Trends
Constant annual cycle
Modell: Weibull distribution

The distance function
Gaussian distribution
PDF
Least Squares
ML
Distance function
ML

Different distributions and their distance functions
Gaussian distribution: Least-squares:
Random number
Pdf
Random number
Distance function

Different distributions and their distance functions
Weibull distribution:
Frequency
Precipitation [mm] Precipitation [mm]
Distance function
Distance function
Precipitation [mm]
Gumbel distribution:
Precipitation [mm]
Pdf

Analyses of a German station network
•132 time series of monthly precipitation
totals, 1901-2000
•Realization of a Gumbel distributed
random variable
Eisenbach-Bubenbach

Example: Eisenbach-Bubenbach [47.97
o
N, 8.3
o
E]

Example: Eisenbach-Bubenbach [47.97
o
N, 8.3
o
E]

The expected value
…of a Gumbel distributed random variable
with time-dependent location parameter a
G(t) and time-dependent scale parameter b
G(t)
Precipitation [mm]
Pdf [1/mm]

The expected value
…of a Gumbel distributed random variable
with time-dependent location parameter a
G(t) and time-dependent scale parameter b
G(t)
Precipitation [mm]
Pdf [1/mm]

Germany: Changing probability of extreme events
> 95th percentile
January
< 5th percentile
January

Germany: Changing probability of extreme events
< 5th percentile
August
> 95th percentile
August

Trend estimates by comparison
LS
January
r
Gumbel
January

Conclusions
•The introduced generalized time series decomposition technique
allows a free choice of the underlying PDF
•The signal is detected in two instead of one parameter of the PDF
•Statistical modeling of precipitation time series can be achieved
•The analytical description of the time series
1.allows probability assessments of extreme values for every
time step during the observation period
2. provides trend estimates taking into account the statistical
characteristics (of precipitation)
Tags