modelos generativos profundos para inteligencia artificial

manuelflorez11021 19 views 11 slides Aug 14, 2024
Slide 1
Slide 1 of 11
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11

About This Presentation

inteligencia artificial


Slide Content

GANs Using Fourier Neural Operators Seismological Laboratory California Institute of Technology

Synthetic Data: Poisson 2D Train on 2000 samples

Synthetic Data: Poisson 2D Generate 2000 samples

Synthetic Data: Poisson 2D Train on 5 Data Points: Mode Collapse

Synthetic Data: Poisson 2D Train on 2000 samples

Real Data Waveforms Broadband ground motions: Downsample to 20 Hz Cut 50 second long window, 1 sec before P-Wave Normalize to -1,1 Original data 3C Select: 5.5-6.5 Samples: 14 020

Waveform Dataset Distance: 0.0 to 180.0 km Magnitude: 4.5 to 7.5 M Vs30: 0.0-1100 m/sec Waveforms: Strong Motion Recording from Japan: K-net and Kik-Net Total: 120,000

JS GANO

W GANO

W GANO

Experiment: Input Dim Dims: - 250, 500 , 750, 1000
Tags