Module3 direct stiffness- rajesh sir

5,282 views 87 slides Aug 06, 2014
Slide 1
Slide 1 of 87
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87

About This Presentation

GCE Kannur


Slide Content

Structural Analysis-III
Di t Stiff Mth d Di
rec
t Stiff
ness
M
e
th
o
d
D
r
. Rajesh K. N.
Assistant
Professor in Civil Engineering
Assistant
Professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE KannurDr.RajeshKN Dept. of CE, GCE KannurDr.RajeshKN
1

Module III Module III
Direct stiffness method
• Introduction – element stiffness matrix – rotation transformation
Direct stiffness method
matrix – transformation of displacement and load vectors and
stiffness matrix – equivalent nodal forces and load vectors –
assembly of stiffness matrix and load vector

determination of
assembly of stiffness matrix and load vector
determination of
nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid
space frame (without numerical examples)
grid

space frame (without numerical examples)
Dept. of CE, GCE KannurDr.RajeshKN
2

Introduction •The formalised stiffness method involves evaluating the
dis
p
lacement transformation matrix C
MJ
correctl
y
p
y
•Generation of matrix C
MJ
is not suitable for computer
programming H th l ti f di t
tiff th d

H
ence
th
e
evo
l
u
ti
on
o
f di
rec
t
s
tiff
ness
me
th
o
d
Dept. of CE, GCE KannurDr.RajeshKN
3

Direct stiffness method
• We need to simplify the assembling process of S
J
, the
J
assembled structure stiffness matrix

The key to this is to use member stiffness matrices for actions The key to this is to use member stiffness matrices for actions
and displacements at BOTHends of each member
If b di l d i h f

If
mem
b
er
di
sp
l
acements
are
expresse
d
w
i
t
h
re
f
erence
to

global co-ordinates, the process of assembling S
J
can be made
simple simple
Dept. of CE, GCE KannurDr.RajeshKN
4

Member oriented axes (local coordinates)
d t t i t d ( l b l di t )
an
d
s
t
ruc
t
ure

or
i
en
t
e
d
axes
(
g
l
o
b
a
l
coor
di
na
t
es
)
L
δ
x
y
L
Local axes
L
δ
L
L
δ
sin L
δ
θ
L
δθ
x
Y Y Y Y
cos
L
δθ
θ
Global axes
y
Global axes Global axes
θ
XX X X
Dept. of CE, GCE KannurDr.RajeshKN
Global axes

1. Plane truss member
Stiffness coefficients in local coordinates
1
3
2
4
y
0
0
Degrees of freedom
1
⎛⎞
⎜⎟
Unit displacement
x
E
A
L
E
A
L
⎜⎟⎝⎠corr. to DOF 1
00
EA EA



⎢⎥
[]
00
0000
00
M
LL
S
EA EA
⎢⎥⎢






⎢⎥
=
Member stiffness matrix in local
coordinates
Dept. of CE, GCE KannurDr.RajeshKN
0000
L
L
⎢⎥⎢


⎦⎥⎥

Transformation of displacement vector
θ
Dis
p
lacements in
g
lobal
22 2
cos UD
θ
=
pg
coordinates: U
1
and U
2
Displacements in local
di
D
d
D
2
D
D
Y
i
UD
θ
12 2
sin
UD
θ
=

θ
111121 2
cos sin UUU D D
θ
θ
=+= −
coor
di
nates:

D
1
an
d
D
2
1
D
Y
11 1
cos
UD
θ
=
21 1
s
i
n
UD
θ
=
221221 2
sin cos UUU D D
θ
θ
=
+= +
11
cos sin
UD
θθ

⎧⎫ ⎧⎫
⎡⎤
⎧⎫ ⎧⎫
⎡⎤
11 22
cos sin sin cos
UD UD
θθ θθ
⎧⎫ ⎧⎫
⎡⎤
=
⎨⎬ ⎨⎬⎢⎥
⎣⎦ ⎩⎭ ⎩⎭
X
11
22
cos sin
sin cos
D
U
D
U
θ
θ
θθ
⎧⎫ ⎧⎫
⎡⎤

= ⎨⎬ ⎨⎬⎢⎥
−⎣⎦ ⎩⎭ ⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
{
}
[
]
{
}
D
RU =

Cidi bth d
⎧⎫ ⎧⎫
C
ons
id
er
i
ng
b
o
th
en
d
s,
11
22
cos sin 0 0
sin cos 0 0
00 i
D
U
D
U
DU
θ
θ
θθ
θθ
⎧⎫ ⎧⎫
⎡⎤

⎪⎪⎪⎢⎥


⎪⎪⎪
⎢⎥=
⎨⎬ ⎨⎬
⎢⎥
33
44
00
cos s
i
n
00sincos
DU D
U
θθ θθ
⎨⎬ ⎨⎬
⎢⎥

⎪⎪⎪
⎢⎥

⎪⎪⎪− ⎩⎭⎣ ⎦⎩⎭
{
}
[]
{
}
LOCAL T GLOBAL
DRD=
[
]
[
]
RO
⎡⎤
[
]
[
]
[
]
[][]
T
RO
R
OR
⎡⎤
=




Rotation matrix
Dept. of CE, GCE KannurDr.RajeshKN

Transformation of load vector
Actions in global
θ
coordinates:
F
1
and F
2
22 2
cos
F
A
θ
=
111121 2
cos sin
FFF A A
θ
θ
=
+= −
22 2 12 2
sin
FA
θ
=

θ
2
A
221221 2
sin cos
FFF A A
θ
θ
=
+= +
Y
11 1
cos
F
A
θ
=
21 1
sin
FA
θ
=
1
A
11
22
cos sin
sin cos
FA
FA
θ
θ
θθ−
⎧⎫ ⎧⎫


= ⎨⎬ ⎨⎬⎢⎥
⎣⎦ ⎩⎭ ⎩⎭
11 1
11
cos sin
A
F
θθ
⎧⎫ ⎧⎫⎡⎤
=
⎨⎬ ⎨⎬
⎢⎥
X
22
sin cos
A
F
θ
θ
⎨⎬ ⎨⎬
⎢⎥

⎩⎭⎣ ⎦⎩⎭
{
}
[
]
{
}
ARF
=
Dept. of CE, GCE KannurDr.RajeshKN
{
}
[
]
{
}
ARF
=

Cidi bth d C
ons
id
er
i
ng
b
o
th
en
d
s,
11
22
cos sin 0 0
sin cos 0 0 A
F
A
F
θθ
θθ
⎧⎫ ⎧⎫⎡⎤
⎪⎪ ⎪⎪⎢⎥
− ⎪⎪ ⎪⎪
⎢⎥
=
⎨⎬ ⎨⎬
33
44
00cossin
00sincos
A
F
A
F
θ
θ
θθ
⎢⎥
=
⎨⎬ ⎨⎬
⎢⎥
⎪⎪ ⎪⎪
⎢⎥
⎪⎪ ⎪⎪− ⎩⎭⎣ ⎦⎩⎭
{}
[
]
{
}
L
OCAL T GLOBAL
i.e., A R A=
Dept. of CE, GCE KannurDr.RajeshKN
10

Transformation of stiffness matrix
{
}
[]
{
}
LOCAL M LOCAL
ASD=
[
]
{
}
[
]
[
]
{
}
T GLOBAL M T GLOBAL
RA SRD=
{
}
[
]
[
]
[
]
{
}
1
GLOBAL T M T GLOBAL
A
RSRD

=
[
]
{
}
[
]
[
]
{
}
T GLOBAL M T GLOBAL
[
]
[
]
1T
RR

{
}
[
]
[
]
[
]
{
}
GLOBAL T M T GLOBAL
{
}
[
]
{
}
ASD
[
]
[
]
TT
RR
=
{
}
[
]
{
}
GLOBAL MS GLOBAL
ASD
=
[
]
[
]
[
]
[
]
T
M
STMT
SRSR
=
where, Member stiffness matrix in
global coordinates
Dept. of CE, GCE KannurDr.RajeshKN

[
]
[
]
[
]
[
]
T
SRSR
=
T
⎡⎤⎡⎤⎡⎤
[
]
[
]
[
]
[
]
M
STMT
SRSR
=
00 10 10 00
00 0000 00
T
cs cs
sc scEA

⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥
−−
⎢⎥⎢⎥⎢⎥ =
⎢⎥⎢⎥⎢⎥
00 101000
00 000000
cs cs
L
sc sc

⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥
−− ⎣⎦⎣⎦⎣⎦
22
ccsccs ⎡⎤−−
⎢⎥
Mb tiff ti
22
22
cs s cs s EA
Lccsccs
⎢⎥


⎢⎥
=
⎢⎥−−
⎢⎥
M
em
b
er
s
tiff
ness
ma
t
r
i
x

in global coordinates
for a
p
lane truss member
22
cs s cs s
⎢⎥
−−⎣⎦
p
Dept. of CE, GCE KannurDr.RajeshKN
12

2. Plane frame member
Stiffness coefficients in local coordinates
2
5
2
4
5
Degrees of freedom
00 00
E
AEA
⎡⎤
1
3
4
6
Degrees of freedom
32 32
00 00
12 6 12 6
00
LLE
IEI EIEI
L
LLL
⎡⎤










⎢⎥
[]
22
64 62
00
00 00
Mi
E
IEI EIEI
LL LL
S
EA EA
⎢⎥⎢
⎥ −


=



⎢⎥
Member stiffness matrix
in local coordinates
32 3 2
00 00
12 6 12 6
00
LLE
IEI EI EI
L
LLL

⎢⎥⎢



−− −


⎢⎥
Dept. of CE, GCE KannurDr.RajeshKN
22
62 64
00
E
IEI EIEI
LL LL
⎢⎥⎢
⎥ −



Transformation of displacement vector
11
22
cos sin 0 0 0 0
sin cos 0 0 0 0
D
U
D
U
θθ
θθ
⎧⎫ ⎧⎫⎡⎤
⎪⎪ ⎪⎪⎢⎥

⎪⎪ ⎪⎪
⎢⎥
33
44
001000
000cossin0
D
U
D
U
θθ
⎪⎪ ⎪⎪
⎢⎥
⎪⎪ ⎪⎪⎢⎥
= ⎨⎬ ⎨⎬⎢⎥
⎪⎪ ⎪⎪


⎪⎪ ⎪⎪
⎢⎥
55
66
000sincos0
000001
D
U
D
U
θ
θ
⎪⎪ ⎪⎪
⎢⎥

⎪⎪ ⎪⎪⎢⎥
⎣⎦ ⎩⎭ ⎩⎭
{
}
[
]
{
}
LOCAL T GLOBAL
DRD
=
[
]
[
]
RO
⎡⎤
{
}
[
]
{
}
LOCAL T GLOBAL
[
]
[
]
[
]
[][]
T
RO
R
OR
⎡⎤
=⎢⎥
⎣⎦
Rotation

matrix
Dept. of CE, GCE KannurDr.RajeshKN

Transformation of load vector
{
}
[
]
{
}
LOCAL T GLOBAL
ARA=
{
}
[
]
{
}
cos sin 0 0 0 0
θθ
⎡⎤⎢⎥
[
]
sin cos 0 0 0 0
001000
R
θθ
⎢⎥

⎢⎥
⎢⎥
=
⎢⎥
[
]
000cossin0
000sincos0
T
R
θ
θ
θθ
=
⎢⎥⎢⎥
⎢⎥−
⎢⎥
000001
⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN

Transformation of stiffness matrix
{
}
[]
{
}
GLOBAL MS GLOBAL
ASD=
[
]
[
]
[
]
[
]
T
M
STMT
SRSR=
Member stiffness matrix in global coordinates global coordinates
EA EA
⎡⎤
0000
0000
cs
sc





⎢⎥
32 32
00 00
12 6 12 6
00
EA EA
LL
E
IEI EIEI
LL LL
⎡⎤

⎢⎥
⎢⎥
⎢⎥

⎢⎥
⎢⎥
[]
001000
000 0
000 0
T
cs
sc
R
⎢⎥⎢

=





⎥ −
⎢⎥
[]
22
64 62
00
00 00
M
E
IEI EIEI
LL LL
S
EA EA
LL
⎢⎥⎢⎥−
⎢⎥
=
⎢⎥

⎢⎥
Where,
,
000001
⎢⎥⎣

32 3 2
12 6 12 6
00
62 64
00
LL
E
IEI EI EI
LL L L E
IEI EIEI
⎢⎥⎢⎥
⎢⎥
−− −
⎢⎥
⎢⎥
⎢⎥
Dept. of CE, GCE KannurDr.RajeshKN
22
00
LL LL
⎢⎥

⎢⎥⎣⎦

Assemblin
g
g
lobal stiffness matrix
gg
Plane truss
2
Force
2
1
3
3
1
3
2
4
1
3
Action/displacement components in
local coordinates of members
Dept. of CE, GCE KannurDr.RajeshKN

4
4
3
4
3
4
2
6
1
5
6
2
5
1
4
3
Action/displacement components in
2
5
6
Action/displacement components in
global coordinates of the structure
Dept. of CE, GCE KannurDr.RajeshKN
1
5

1234
Global DOF
11 12 13 14
1111
21 22 23 24
22
22
1
2
MMMM
ssss ssss
ccsccs cs s cs s
EA
−− ⎡⎤


⎢⎥


−−
⎢⎥
⎢⎥
1234
[
]
1111
31 32 33 34
1111
41 42 43 44
122
22
2 3 4
MMMM
MMMM
M
ssss ssss
cs s cs s
EA
S
ccsccs L
−−
⎢⎥
⎢⎥
==
−−⎢⎥


⎢⎥
⎢⎥⎣⎦
⎣⎦
41 42 43 44
1111
22
4
MMMM
ssss
cs s cs s
⎢⎥
⎢⎥
−−
⎣⎦
⎣⎦
123456
1 2
××××




××××
⎢⎥
C t ib ti f
[
]
2 34
J
S
××××
⎢⎥
××××


=
⎢⎥
C
on
t
r
ib
u
ti
on
o
f
Member 1 to global
stiffness matrix
[
]
4 5
J
⎢⎥
×
×××




⎢⎥
Dept. of CE, GCE KannurDr.RajeshKN
6
⎢⎥⎣

3456
Global DOF
11 12 13 14
2222
21 22 23 24
3
4
MMMM
ssss ssss
⎡⎤
⎢⎥
⎢⎥
3456
[
]
22
2
22
31 32 33 34
2222
41 42 43 44
4 5 6
MMMM
MM M
M
M
ssss ssss ssss
S=
⎢⎥⎢⎥
⎢⎥
⎣⎦
2222
6
MMMM
ssss
⎣⎦
123456
1 2
⎡⎤
⎢⎥
⎢⎥
C t ib ti f
[]
2 3 4
J
S
⎢⎥
×
××× ⎢⎥
=⎢⎥
××××
⎢⎥
C
on
t
r
ib
u
ti
on
o
f
Member 2 to global
stiffness matrix
4 5 6
××××
⎢⎥⎢⎥
×
×××
⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
6
⎢⎥
×
×××
⎣⎦

11 12 13 14
1
⎡⎤
1256
Global DOF
[
]
11 12 13 14
3333
21 22 23 24
33
33
1 2
MMMM MMMM
s
sss
ssss
S
⎡⎤⎢⎥⎢⎥
[
]
33
3
33
31 32 33 34
3333
41 42 43 44
5 6
MMMM MM M
M
M
ssss
S
=
⎢⎥⎢⎥⎢⎥⎣⎦
41 42 43 44
3333
6
MMMM
s
sss
⎢⎥⎣⎦
123456
1 2
×
×××


⎢⎥
123456
[
]
2 3
J
S
⎢⎥
×
×××




=
⎢⎥
Contribution of
Member 3 to global
stiffness matrix
[
]
4
5
J
S
⎢⎥⎢



×
×××
⎢⎥
stiffness matrix
Dept. of CE, GCE KannurDr.RajeshKN
6
⎢⎥
×
×××

Assembled global stiffness matrix
11 12 13 1411 12 13 14
ss ss
ss
ss
++
1
⎡⎤
12 3456
11 11
21 22 23 24
11 11
33 33
21 22 23 24
33 33
MM MM
MM MM
MM MM
MM MM
ss ss ss ss
ss
ss
ss ss
++ ++
1 2
⎡⎤⎢



⎢⎥
[]
31 32 311 12 13 14
2222
21 22 23 24
334
1111
41 42 43 44
MMMM MMMM
J
ssss
ssss
ssss
s
S
s
ss
++
=
++
3 4
⎢⎥⎢

⎢⎥
31 3
2222
31 32 33
11
2
2
11
2 33 32
MMMM
MM MM
MMMM
M M
ss
ssss
ss
s
s
s
ss
s
++
+
34
2
33 34
3
4 5
M M
s s+
⎢⎥⎢

⎢⎥
41 42 43 44
2
41 42 43 44
322 3323
6
MMMM MM MM
ss ssssss++
⎢⎥⎣

Dept. of CE, GCE KannurDr.RajeshKN

Im
p
osin
g
boundar
y
conditions
2
pg y
Plane truss example
2
1
1
2
0
UUUU
=
===
Boundary conditions are:
3
3
1
1256
0
UUUU
Boundary conditions are:
{
}
GLOBAL
D
11 12 13 14 11 12 13 14
ss ss
s
F
sss
++
⎧⎫
U
⎧⎫
⎡⎤
{
}
GLOBAL
D
33 33 11 11
221 22 122 2324
11 11
23 24
1
233 33
MM MM MM
MM MM
MM
MM MM
ss ss ss ss
s
F F
sss
ss ss
++ ++
⎧⎫⎪⎪
⎪⎪
⎪⎪
1
2
U U
⎧⎫
⎡⎤

⎪ ⎢⎥




⎪⎪
⎢⎥
11 12 13 14
2222
21 22 23 24
2
31 32 33 34
1111
41 42 43 44
1
3
11 1
2
4
2
2
MMMMMMM
MMM
M
MMMM
M
ssss
sss
ssss
ssss
F
F
s
++
=
+
+
⎪⎪⎨⎬⎪⎪
43
U
U
⎪⎪
⎢⎥

⎬ ⎢⎥
⎪⎪
⎢⎥
2
1
11 1
2
4 5
2
2
MMM
MMMM
M
F F
s
⎪⎪⎪⎪
⎪⎪
⎩⎭
31 32 33 34
2222
41 42 43 44
31 32 33 34
33 33
41 42 43 44
4 5 MMMM MM MM
sssssssU
U
++
⎪⎪
⎢⎥

⎪ ⎢⎥




⎣⎦
⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
6
F
⎩⎭
41 42 43 44
2222
41 42 43 44
33 336 MM MM MMMM
s ssss sss
U
+
+
⎣⎦
⎩⎭

Reduced e
q
uation s
y
stem
qy
(after imposing boundary conditions)
33 34
11
43 44
11 12
22
21 22
33
M MMM
FU
FU
ssss++ ⎧⎫ ⎧⎫⎡⎤
= ⎨⎬ ⎨⎬
⎢⎥
++
⎩⎭⎣ ⎦⎩⎭
1212
44
MM MM
FU
sss s
⎢⎥
++
⎩⎭⎣ ⎦⎩⎭
•This reduced equation system can be solved to get the unknown
displacement components
34,UU
{
}
[
]
{
}
LOCAL T GLOBAL
DRD=
•From
{
}
LOCAL
D
can be found out. {
}
{
}
DD
=
F h b
Dept. of CE, GCE KannurDr.RajeshKN
{
}
{
}
LOCAL Mi
DD
=

F
or
eac
h
mem
b
er,

{
}
{
}
[
]
{
}
AASD
{
}
{
}
[
]
{
}
M
i MLi Mi Mi
AASD
=+
Member end actions
Where,
Fixed end actions on the member,
{
}
M
Li
A
Member stiffness matrix,
[
]
M
i
S
[
]
in local
coordinates
Displacement components of the member,
[
]
M
i
D
{
}
{
}
[
]
{
}
LOCAL T GLOBAL Mi
DRD D= =
As we know,

{
}
{
}
[
]
[
]
{
}
iii MMLMiiTGLOBAL
AASRD ∴=+
Dept. of CE, GCE KannurDr.RajeshKN
25

Direct Stiffness Method: Procedure
STEP 1: Get member stiffness matrices for all members
[
]
M
i
S
STEP 2: Get rotation matrices for all members
[
]
Ti
R
STEP 3: Transform member stiffness matrices from local coordinates
into global coordinates to get
[
]
MSi
S
[
]
MSi
STEP 4: Assemble global stiffness matrix
[
]
J
S
STEP 5: Impose boundary conditions to get the reduced stiffness
matrix
[
]
S
[
]
FF
S
Dept. of CE, GCE KannurDr.RajeshKN
26

STEP 6: Find e
q
uivalent
joint loads from a
pp
lied loads on each
qj pp
member (loads other than those applied at joints directly) STEP 7
Tf b ti f ll dit it lbl
STEP 7
: T
rans
f
orm
mem
b
er

ac
ti
ons
f
rom
l
oca
l
coor
di
na
t
es
i
n
t
o
g
l
o
b
a
l
coordinates to get the transformed load vector STEP 8: Find combined load vector by adding the above
transformed load vector and the loads applied directly at joints
[
]
C
A
STEP 9: Find the reduced load vector by removing members in
h l d di b d di i
[
]
FC
A
t
h
e
l
oa
d
vector
correspon
di
ng

to
b
oun
d
ary

con
di
t
i
ons
STEP 10: Get displacement components of the structure in global
coordinates
{}
[
]
{
}
1
FFFFC
D
SA

=
Dept. of CE, GCE KannurDr.RajeshKN
27

{
}
[
]
{
}
LOCAL T GLOBAL
DRD=
STEP 11: Get displacement components of each member in local
coordinates
STEP 12: Get member end actions from
{
}
{
}
[]
[
]
{
}
Mi MLi MiiTGLOBiAL
RD AAS

=+
{
}
{
}
[
]
[
]
R
RC RF F
A
ASD =− +
STEP 13: Get reactions from
{
}
RC
A
represents combined joint loads (actual and
e
q
uivalent
)
a
pp
lied directl
y
to the su
pp
orts.
q)pp y pp
Dept. of CE, GCE KannurDr.RajeshKN
28

•Problem 1:
1
Member stiffness matrices in local co
ordinates
1
EA
⎡⎤
⎡⎤
1
.
Member stiffness matrices in local co
-
ordinates
(without considering restraint DOF)
[]
1
1
0 0
1.155
00
00
M
EA
SL
⎡⎤
⎡⎤

⎥ ⎢⎥
==

⎥ ⎢⎥
⎣⎦
⎣⎦
00
00
⎣⎦
⎣⎦
[
]
10
⎡⎤
[
]
12 0
⎡⎤
Dept. of CE, GCE KannurDr.RajeshKN
[
]
2
10 00
M
S
⎡⎤
=
⎢⎥
⎣⎦
[
]
3
12 0
00
M
S
⎡⎤
=



2. Rotation (transformation) matrices
[
]
1
cos sin 0.5 0.866
i086605
T
R
θθ θθ
− ⎡⎤⎡ ⎤
==
⎢⎥⎢ ⎥ ⎣⎦⎣ ⎦
[
]
160
s
i
ncos
0
.
866 0
.
5
T
θ
θθ
=−
⎢⎥⎢ ⎥

⎣⎦⎣ ⎦
[]
290
01 10
T
R θ

⎡⎤
=
⎢⎥
⎣⎦
90
10
θ
=

⎣⎦
[]
3
150
0.866 0.5
0.5 0.866
T
R
θ
=−
−−⎡⎤
=
⎢⎥

⎣⎦⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
30

3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[
]
[
]
[
]
[
]
1111
T
MS T M T
SRSR=
0.5 0.866 1 0 0.5 0.866 1
0866 05 0 0 0866 05
1155
T
−−

⎤⎡⎤⎡ ⎤
=
⎢⎥⎢⎥⎢⎥ ⎣⎦⎣⎦⎣⎦
0
.
866 0
.
5000
.
866 0
.
5
1
.
155
⎢⎥⎢⎥⎢⎥ ⎣⎦⎣⎦⎣⎦
0216 0375

⎡⎤
0
.
216 0
.
375
0.375 0.649

⎡⎤
=





Dept. of CE, GCE KannurDr.RajeshKN

[]
2
011001
10 0010
T
MS
S
−− ⎡⎤⎡⎤⎡⎤
=
⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦ ⎣⎦⎣⎦⎣⎦
00⎡⎤
=
⎢⎥
01
=
⎢⎥⎣⎦
[
]
3
0.866 0.5 1 0 0.866 0.5 1
05 0866 0 0 05 0866
2
T
MS
S
−− −− ⎡⎤⎡⎤⎡⎤
=
⎢⎥⎢⎥⎢⎥ ⎣⎦⎣⎦⎣⎦
[
]
3
0
.
50
.
866 0 0 0
.
50
.
866
2
MS
⎢⎥⎢⎥⎢⎥


⎣⎦⎣⎦⎣⎦
0.375 0.217 ⎡⎤
⎢⎥
0.217 0.125
=
⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
32

4. Global stiffness matrix
021600375 037500217
⎡⎤
(by assemblingtransformed member stiffness matrices)
[]
0
.
21600
.
375 0
.
375 0 0
.
217
0.375 0 0.217 0.649 1 0.125
FF
S
+
+−++
⎡⎤
=
⎢⎥
−++ ++ ⎣⎦
0.591 0.158
0158 1774
− ⎡⎤
=
⎢⎥⎣⎦
0
.158

1
.
774

⎢⎥

⎣⎦
This is the reducedglobal stiffness matrix, since restraint DOF
were not considered. Hence, boundary conditions are
automatically incorporated automatically incorporated
.

Dept. of CE, GCE KannurDr.RajeshKN

5. Loads
{}
0
5
FC
A


=



⎩⎭
6. Joint displacements 6. Joint displacements
0772
⎧⎫
{}
[
]
{
}
1
F
FF FC
D
SA

=
0
.
772
2.89

⎧⎫
=


−⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
34

7. Member forces
{
}
{
}
[
]
[
]
{
}
M
iMLiMiiTGLOBi
A
L
RD AAS

=+
Member 1
{
}
{
}
[
]
[
]
{
}
{}{}
[
]
[
]
{
}
1111 1T MMGL MLBA LO
RD AAS=+
[
]
[
]
{
}
11 1TGLOBAL M
RD S=
1
0.5 0.866 0
1155
0.772
⎡⎤
− ⎡⎤
⎢⎥
=
⎢⎥

−⎧


⎨⎬
1.833
=


⎨⎬
1
.
155
0.866 0.5
00
2.89
⎢⎥


⎣⎦
⎣⎦
⎨⎬

⎩⎭0
⎨⎬⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
35

{
}
[
]
[
]
{
}
RD
AS
Mb 2
{
}
[
]
[
]
{
}
222 2T GLOBAL MM
RD
AS
=
M
em
b
er
2
0.772
2
100 1
0010.89

⎡⎤⎡ ⎤
=
⎢⎥⎢ ⎥






⎦−⎩



2.89
0

=



⎩⎭
Member 3
{}
[
]
[
]
{
}
333 3TGLOBAL MM
R
D
A
S
=
12 0 0.866 0.5
00 0.5 0.866
0.772
2.89

− ⎡⎤⎡ ⎤
=
⎢⎥⎢ ⎥

⎣⎦




⎣⎦


⎩⎭
1.057
0
=




⎩⎭
⎣⎦
⎣⎦
⎩⎭
⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
36

•Problem 2 :
1
0
kN m
5
4
8
4
m
0
kN m
C
B
20kN
2
4
6
7
9
4
m
1
9
4m
1
2
A
EI is constant.
1
2
3
Displacements in global co
-
ordinates
Dept. of CE, GCE KannurDr.RajeshKN
37
global co
ordinates

2
5
6
9
2
1
4
3
6
4
6
2
6
9
2
5
1
1
Ki ti
1
Ki
nema
ti
c

indeterminacy
DOF in local co-
ordinates
1
2
33
Dept. of CE, GCE KannurDr.RajeshKN
38

00 00
12 6 12 6
EA EA
LL
EI EI EI EI





⎢⎥⎢⎥
32 32
22
12 6 12 6
00
64 62
00
EI EI EI EI
LL LL E
IEI EIEI
LL LL
⎢⎥⎢⎥






⎥ −
⎢⎥
Member stiffness matrix
[]
00 00
12 6 12 6
Mi
LL LL
S
EA EA
LL
EI EI EI EI
⎢⎥
=







⎢⎥
of a 2D frame member in
local coordinates
32 3 2
22
12 6 12 6
00
62 64
00
EI EI EI EI
L
LLL
E
IEI EIEI
LL LL
⎢⎥
−− −





⎥ −
⎢⎥⎣⎦
LL LL
⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
39

1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF)
6
Local DOF
Member 1 (
w
ith
ou
t
cons
id
er
i
ng
res
t
ra
i
n
t DOF)
[
]
4EI
S
⎡⎤
=
⎢⎥
[
]
1
EI EI
=
=
6
Global DOF
[
]
1
M
S
L
=
⎢⎥⎣⎦
[
]
1
EI EI
Member 2
69
Global DOF
3 6
Local DOF
Member 2
[
]
42EI EI
LL
S




⎢⎥
6

9
Global DOF
0.5 EI EI
⎡⎤
[
]
2
24
M
LL
S
EI EI L
L
=
⎢⎥⎢





0.5EI EI
⎡⎤
=
⎢⎥
⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
40

2. Rotation (transformation) matrices
In this case, transformation matrices are:
[
]
[
]
1
1
T
R=
corresponding to local DOF 6
[]
2
10
01
T
R
⎡⎤
=
⎢⎥
⎣⎦
corresponding to local DOFs 3 & 6
⎣⎦
3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[
]
1MS
SEI=
[]
2
0.5
0.5
MS
EI EI
S
EI EI


=


⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
⎣⎦

4 A bld ( d d d)
lbl
tiff t i
69
Gl b l DOF
4
.
A
ssem
bl
e
d (
an
d
re
d
uce
d)
g
l
o
b
a
l
s
tiff
ness
ma
t
r
i
x
[
]
0.5 EI EI
S
IE ⎡
+

=
⎢⎥
6

9
Gl
o
b
a
l DOF
20.5
EI


=
⎢⎥
[
]
0.5
F
F
S
EI E
I
=
⎢⎥⎣
⎦0.5 1
EI
=
⎢⎥⎣

Dept. of CE, GCE KannurDr.RajeshKN

5. Loads
20
13.33
13.33
B
C
20
13.33
20
13.33
B
C
20
B
20
20
C
C
20
Fi d d ti
A
Combined (Eqlt.+
actual) joint loads
A
Fi
xe
d
en
d
ac
ti
ons
A
(Loads in global
co-ordinates)
{
}
13.33
1333
FC
A



=
⎨⎬⎩⎭
Loads corresponding to global DOF
6,9:
Dept. of CE, GCE KannurDr.RajeshKN
43
{
}
13
.
33
FC
⎨⎬⎩⎭
Loads corresponding to global DOF
6,
9:

6 Joint displacements
1143
1


6
.
Joint displacements
{}
[]
{
}
1
FFFFC
D
SA

=
11
.
43
19.04
1
EI


=



⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
44

7. Member end actions
{}
{
}
[
]
[
]
{
}
Mi MLi MiiTGLOBiAL
RD AAS

=+
: fixed end actions for member
i
{
}
M
Li
A
Member 1
{
}{ }
[
]
[
]
{
}
1111 1
T MMGL MLBA LO
RD AAS
=+
{
}
[
]
{
}
D
AS
{
}
{
}
41
01143
E
I
⎡⎤
{
}
[
]
{
}
11 1
ML MGLOBAL
D
AS
=+
{
}
{
}
011
.
43
11.43
LEI⎡⎤
=+ −


⎣⎦
=−
This is the member end action corresponding to local DOF 6
f
Mb 1
i b d h d f
Dept. of CE, GCE KannurDr.RajeshKN
45
o
f
M
em
b
er
1
.

i
.e.,
mem
b
er
en
d
moment
at
t
h
e
top
e
d
ge
o
f
Member 1.

Member 2
{
}
{
}
[
]
{
}
222 2 MMLMGLOBAL
AAD S =+
Member 2
13.33 11.43
13.33 1
0.5
9.04
1
0.5
EI EI
EI EIEI


⎫⎧⎫
+
⎡⎤
=
⎢⎥

⎨⎬ ⎨
−⎩⎭ ⎩⎦


13.33 1.91


⎫⎧ ⎫
+
⎨⎬⎨
=

11.42
=


⎨⎬
Th th b ti di t
ll DOF 3
13.33 13.325
+
⎨⎬⎨ ⎩⎭


⎩⎭0
⎨⎬⎩⎭
Th
ese
are
th
e
mem
b
er
ac
ti
ons
correspon
di
ng
t
o
l
oca
l DOF
s
3
and 6 of Member 2. i.e., member end moments of Member 2.
Dept. of CE, GCE KannurDr.RajeshKN
46

11.43
0
B
0
B
C
11.43
Member end moments
A
Dept. of CE, GCE KannurDr.RajeshKN
47

•Problem 3 :
10 kips
0.24 kips/in.
20 kips
1000 kips-in
75 in
100 in
50 in
50 in
100 in
50 in
50 in
Dept. of CE, GCE KannurDr.RajeshKN
48

25
1
3
4
6
8
7
9
8
Global DOF
7
Dept. of CE, GCE KannurDr.RajeshKN
49

2
13
5
6
Local DOF
4
6
Local DOF
Dept. of CE, GCE KannurDr.RajeshKN
50
4

Free DOF
Dept. of CE, GCE KannurDr.RajeshKN
51

1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF) (
w
ith
ou
t
cons
id
er
i
ng
res
t
ra
i
n
t DOF)
00
12 6
X
EA
L
EI EI






⎢⎥
1000 0 0


⎢⎥
[
]
132
12 6
0
64
0
ZZ
M
Z
Z
EI EI
S
LL
EI EI
⎢⎥
=





⎢⎥

5
0 120 6000
0 6000 4 10
⎢⎥
=−


−×




2
0
LL
⎢⎥



00
12 6
X
EA
L
EI EI






⎢⎥
800 0 0


⎢⎥
[
]
232
12 6
0
64
0
ZZ
M
Z
Z
EI EI
S
LL
EI EI
⎢⎥
=




⎢⎥
5
0 61.44 3840
038403.210
⎢⎥
=


×




Dept. of CE, GCE KannurDr.RajeshKN
52
2
0
LL
⎢⎥⎣

2. Rotation (transformation) matrices
[
]
cos sin 0
i0
R


⎢⎥
θθ θθ
[
]
s
i
ncos
0
001
T
R
⎢⎥
=







θθ
Member 1
Member 2
[
]
2
0.8 0.6 0
0.6 0.8 0 R





=
⎢⎥
[
]
1
100
010 R




=
⎢⎥
[
]
001
⎢⎥⎢



[
]
1
001
⎢⎥⎢



Dept. of CE, GCE KannurDr.RajeshKN
53

3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[]
[
][ ]
[
]
1111
T
MS T M T
SRSR=
100 1000 0 0 100 0 1 0 0 120 6000 0 1 0
T

⎤⎡ ⎤⎡ ⎤

⎥⎢ ⎥⎢ ⎥
=
⎢⎥⎢ ⎥⎢⎥
5
0 1 0 0 120 6000 0 1 0 0 0 1 0 6000 4 10 0 0 1
=

⎢⎥⎢ ⎥⎢⎥
−×

⎥⎢ ⎥⎢ ⎥

⎦⎣ ⎦⎣ ⎦
5
1000 0 0
0 120 6000




=−


⎢⎥
5
0 6000 4 10 −×
⎢⎥⎣

Dept. of CE, GCE KannurDr.RajeshKN
54

[
]
0.8 0.6 0 800 0 0 0.8 0.6 0 06 08 0 0 6144 3840 06 08 0
T
S
−− ⎡⎤⎡ ⎤⎡⎤
⎢⎥⎢ ⎥⎢⎥
[
]
2
5
0
.
60
.
80 061
.
44 3840 0
.
60
.
80
0 0 1 0 3840 3.2 10 0 0 1
MS
S
⎢⎥⎢ ⎥⎢⎥
=
⎢⎥⎢ ⎥⎢⎥
× ⎢⎥⎢ ⎥⎢⎥
⎣⎦⎣ ⎦⎣⎦
0.8 0.6 0 640 480 0
06 08 0 3686 4915 3840

⎡⎤⎡ ⎤
⎢⎥⎢ ⎥ =−
⎢⎥⎢ ⎥
5
0
.
60
.
8036
.
86 49
.
15 3840
0 0 1 2304 3072 3.2 10
=−
⎢⎥⎢ ⎥
× ⎢⎥⎢ ⎥ ⎣⎦⎣ ⎦
534.12 354.51 2304
35451 32732 3072





=

⎢⎥
5
354
.
51 327
.
32 3072
2304 3072 3.2 10
⎢⎥
×




Dept. of CE, GCE KannurDr.RajeshKN

4
.
A
sse
m
b
l
ed (
r
educed)
g
l
oba
l
st
iffn
ess
m
at
ri
x
1000 534.12 0 354.51 0 2304
+
−+
⎡⎤
. sse b ed ( educed)
goba
st ess at x
[]
55
0 354.51 120 327.32 6000 3072
0 2304 6000 3072 4 10 3.2 10
FF
S
⎡⎤⎢⎥
=− + −+
⎢⎥
+

+×+×
⎢⎥⎣⎦
0 2304 6000 3072 4 10 3.2 10
++×+×
⎢⎥⎣⎦
153412 35451 2304
⎡⎤
5
1534
.
12 354
.
51 2304
354.51 447.32 2928

⎡⎤⎢⎥
−−


=
⎥⎥
5
2304 2928 7.2 10

×
⎢⎣⎦

Dept. of CE, GCE KannurDr.RajeshKN
56

5. Loads
⎧⎫
{}
0
10
J
A
⎧⎫⎪⎪
=−⎨⎬
⎪⎪
Actual joint loads
1000
⎪⎪

⎩⎭
{
}
022
A
⎧⎫
⎪⎪
⎨⎬
Equivalent joint loads
{
}
22 50
E
A
=−
⎨⎬⎪⎪

⎩⎭
Equivalent joint loads
0


⎪⎪
{
}
{
}
{
}
32
1050
FC J E
AAA
⎪⎪
=+=−





⎩⎭
Hence, combined joint loads
Dept. of CE, GCE KannurDr.RajeshKN
⎩⎭

6. Joint displacements {
}
[
]
{
}
1
FFFFC
DSA

=
{
}
[
]
{
}
FFFFC
DSA
1
{}
1
1534.12 354.51 2304 0
354.51 447.32 2928 32
F
D



⎫ ⎡⎤

⎪ ⎢⎥
∴=− − −


⎢⎥
⎪⎪
5
2304 2928 7.2 10 1050
⎢⎥
⎪⎪
−×− ⎢⎥⎩⎭ ⎣⎦
0.0206
0.09936
−⎧⎫
⎪⎪
=−
⎨⎬
0.09936
0.001797
⎨⎬⎪⎪

⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN

7. Member end actions
{}{}
[
]
[
]
{
}
Mi MLi MiiTGLOBiAL
RD AAS

=+
1000 0 0 1 0 00.0206
⎡⎤⎡⎤

⎧⎫⎪⎪
{}
5
0 120 6000 0 1 00.0993 0 6000 4 10 0
6
01
0.001797
MLi
A
⎡⎤⎡⎤ ⎢⎥⎢⎥
=+ −
⎢⎥⎢⎥

×
⎢⎥⎢⎥
⎧⎫⎪⎪
−⎨
⎣⎦⎣
⎪⎩

⎬⎪


0 6000 4 10 0
01
0.001797
⎢⎥⎢⎥ ⎣⎦⎣



8. Reactions
{
}
{
}
[
]
[
]
RRCRFF
A
ASD =− +
Dept. of CE, GCE KannurDr.RajeshKN

•Problem 4:
20kN/
6m
2m
2m
40kN
20kN/
m
16kNm
2m
80kN
2m
I
1
=I
3
=
I
2
=
I
2
A
1
=A
3
=
Dept. of CE, GCE KannurDr.RajeshKN
60
A
2
=

1
2
3
1
2
3
4
Ctiit C
onnec
ti
v
it
y:
Member Node 1 Node 2
112
223
3
2
4
Dept. of CE, GCE KannurDr.RajeshKN
61
3
2
4

4
6
5
4
6
Free DOF
Dept. of CE, GCE KannurDr.RajeshKN
62

1. Member stiffness matrices in local co-ordinates
( ith t id i t i t DOF) (
w
ith
ou
t
cons
id
er
i
ng
res
t
ra
i
n
t DOF)
5
00
3.5 10 0 0 12 6
X
EA
L
EI EI
⎡⎤
⎢⎥

⎤ × ⎢⎥
⎢⎥
⎢⎥
[]
132
12 6
0 0 6562.5 13125
0 13125 35000
64
0
ZZ
M
ZZ
EI EI
S
LL
EI EI
⎢⎥
⎢⎥
=
−= −


⎢⎥

⎥ − ⎢⎥


⎢⎥

2
0
LL
⎢⎥⎣⎦ ⎡⎤
[
]
5
00
3.5 10 0 0 12 6
X
ZZ
EA
L
EI EI
⎡⎤⎢⎥

⎤ ×
⎢⎥
⎢⎥
⎢⎥
[
]
232
2
12 6
0 0 3888.89 11666.67
0 11666.67 46666.67
64
0
ZZ
M
ZZ
EI EI
S
LL
EI EI
⎢⎥
⎢⎥
=
=


⎢⎥


⎢⎥


⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
63
2
LL
⎢⎥⎣⎦

⎡⎤
[
]
5
00
3.5 10 0 0 12 6
0 0 6 62 1312
X
ZZ
EA
L
EI EI
S
⎡⎤⎢⎥

⎤ × ⎢⎥
⎢⎥
⎢⎥
[
]
332
2
12 6
006
5
62
.5
1312
5
0 13125 35000
64
0
ZZ
M
ZZ
EI EI
S
LL
EI EI
⎢⎥
⎢⎥
==


⎢⎥


⎢⎥


⎢⎥⎣⎦
2
LL
⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
64

2. Rotation (transformation) matrices
010

⎡⎤
100
⎡⎤
100
⎡⎤
[]
3
90
010 100 001
R
θ
=−
⎡⎤⎢

=


⎢⎥⎣⎦
[]
1
0
100 010 001
R θ
=
⎡⎤⎢

=


⎢⎥⎣⎦
[]
2
0
010
001
R
θ
=
⎡⎤⎢

=




⎣⎦
Member 1
001
⎢⎥⎣⎦
Member 2
001
⎢⎥⎣⎦
Member 3
⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
65

3. Member stiffness matrices in global co-ordinates
(Transformed member stiffness matrices)
[][]
[
]
[
]
1111
T
MS T M T
SRSR
=
5
3.5 10 0 0
0 6562.5 13125
⎡⎤×
⎢⎥
=

⎢⎥
0 13125 35000
⎢⎥⎢⎥−
⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
66

5
T
⎡⎤
⎡⎤ ⎡⎤
[]
5
2
100 3.510 0 0 100
0 1 0 0 3888.89 11666.67 0 1 0
T
MS
S
⎡⎤
×
⎡⎤ ⎡⎤
⎢⎥ ⎢⎥ ⎢⎥
=
⎢⎥ ⎢⎥ ⎢⎥
⎢⎥
⎢⎥ ⎢⎥
0 0 1 0 11666.67 46666.67 0 0 1
⎢⎥
⎢⎥ ⎢⎥ ⎣⎦ ⎣⎦⎣⎦
5
3.5 10 0 0
0 3888.89 11666.67
⎡⎤×
⎢⎥
=
⎢⎥
0 11666.67 46666.67
⎢⎥⎢⎥
⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
67

[]
5
3
0103.510 0 0 010
1 0 0 0 6562.5 13125 1 0 0
T
MS
S

⎤ −× − ⎡⎤ ⎡⎤
⎢⎥ ⎢⎥ ⎢⎥
=
⎢⎥
⎢⎥ ⎢⎥
0 0 1 0 13125 35000 0 0 1
⎢⎥
⎢⎥ ⎢⎥

⎥ ⎢⎥ ⎢⎥
⎣⎦ ⎣⎦⎣⎦
5
010 0 3.510 0
1 0 0 65625 0 13125

⎤ −× ⎡⎤
⎢⎥
⎢⎥
⎢⎥
1006562
.
5 0 13125
0 0 1 13125 0 35000
⎢⎥
⎢⎥
=

⎢⎥
⎢⎥

⎥ ⎢⎥⎣⎦


6562.5 0 13125 ⎡⎤
⎢⎥
5
03.5100
13125 0 35000 ⎢⎥

⎢⎥
⎢⎥
⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
68
⎣⎦

4
.
A
sse
m
b
l
ed (a
n
d
r
educed)
g
l
oba
l
st
iffn
ess
m
at
ri
x
. sse b ed (a d educed)
goba
st ess at x
55
3.5 10 3.5 10 6562.5 0 0 0 0 0 13125

⎤ × + × + ++ ++
⎢⎥
[
]
5
0 0 0 6562.5 3888.89 3.5 10 13125 11666.67 0
0 0 13125 13125 11666.67 0 35000 46666.67 35000
FF
S
⎢⎥
=++ ++×−++



⎥ ++ − + + + +


7065625 0 13125
⎡⎤
706562
.
5 0 13125
0 360451.39 1458.33
⎡⎤⎢

=−
⎢⎥
13125 1458.33 116666.67
⎢⎥





Dept. of CE, GCE KannurDr.RajeshKN

60
5. Loads
20
20 kNm60
60
20
20
60
60
40
4040
40
Fixed end actions
Dept. of CE, GCE KannurDr.RajeshKN
70
40
Fixed end actions

80kN
0
+
16
=
16 kNm
01616 kNm
40kN
Combined
(
e
q
uivalent + actual
)
joint loads
Dept. of CE, GCE KannurDr.RajeshKN
71
(q )j

0
⎧⎫
0
⎧⎫
0
⎧⎫
0


⎪⎪
00
0
⎧⎫⎪



⎪⎪
0 20
20
⎧⎫⎪





⎪⎪
020
20
⎧⎫⎪





⎪⎪
20
20
0
⎪⎪






⎪⎪
0
0
⎪⎪⎪





⎪⎪
40
80
⎪⎪⎪




⎪ −
⎪⎪
40
80
⎪⎪⎪




⎪ −
⎪⎪
{}
0 60
60
RC
A
⎪⎪⎪



=−




⎪⎪
{}
16
;
0
0
J
A
⎪⎪



=




⎪⎪
{}
0
;
0
60
E
A
⎪⎪⎪

=




⎪⎪

{}{}
{}
16
;
0
60
CJE
AAA
⎪⎪



=+=




⎪⎪

40
80
⎪⎪⎪






⎪⎪
00
0
⎪⎪⎪





⎪⎪
60
60
40
⎪⎪⎪





⎪⎪
40


⎪⎪
60
60
40
⎪⎪⎪





⎪⎪
40
⎪⎪

⎩⎭
80
0
⎪⎪





⎩⎭
0
40
⎪⎪⎪



−⎩⎭
{
}
80
16
FC
A
⎪⎪
=−




−⎩⎭
80
40
⎪⎪





−⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
72

[
]
[
]
{
}
1
DS A

=
6. Jo
in
t d
i
sp
l
ace
m
e
n
ts
1
706562.5 0 13125 40

⎡⎤⎧⎫
⎪⎪
[
]
[
]
{
}
F
FF FC
DS A
=
6. Jo t d sp ace e ts
0 360451.39 1458.33 80
13125 1458.33 116666.67 16
⎡⎤⎧⎫
⎪⎪
⎢⎥
=−−⎨⎬
⎢⎥
⎪⎪
−−
⎢⎥⎣⎦⎩⎭⎢⎥⎣⎦⎩⎭
596
0.142 10 0.646 10 0.160 10
40

−−−
⎡⎤
×−×−×
⎧⎫
⎢⎥
957
675
40
0.646 10 0.277 10 0.348 10 80
16
0160 10 0348 10 0859 10

−−− −−−
⎡⎤
⎧⎫
⎢⎥


=− × × × −

⎬ ⎢⎥


⎢⎥

×××
⎩⎭
⎣⎦
16
0
.
160 10 0
.
348 10 0
.
859 10

⎢⎥
−× × ×
⎩⎭
⎣⎦
4
0.594 10


⎫ ×
⎪⎪
3
3
0.222 10
0.147 10


⎪⎪
=− ×





×
⎩⎭
Dept. of CE, GCE KannurDr.RajeshKN
73
⎩⎭

7. Member end actions
{
}{ }
[
]
[
]
{
}
Mi MLi MiiTGLOBiAL
RD AAS

=+
Dept. of CE, GCE KannurDr.RajeshKN

Summary
Direct stiffness method
Summary
• Introduction – element stiffness matrix – rotation transformation
matrix – transformation of displacement and load vectors and
stiffness matrix – equivalent nodal forces and load vectors –
assembly of stiffness matrix and load vector

determination of
assembly of stiffness matrix and load vector
determination of
nodal displacement and element forces – analysis of plane truss beam and plane frame (with numerical examples) – analysis of grid
space frame (without numerical examples)
grid

space frame (without numerical examples)
Dept. of CE, GCE KannurDr.RajeshKN
75

• Problem X:
2
6
1
3
5
6
4
5
Dept. of CE, GCE KannurDr.RajeshKN
76

00
EA EA
⎡⎤
[
]
1
00
10 10
0000 00001
M
LL
S
⎡⎤

⎢⎥−


⎢⎥


⎢⎥


=
=
⎢⎥
⎢⎥
[
]
1
10 1 0 2
00
0000
0000
M
EA EA
LL⎢⎥

⎢⎥
−⎢⎥



⎦ ⎢⎥
⎢⎥⎣⎦
0000
⎢⎥⎣⎦ [
]
[
]
[
]
234
SSS
=
==
[
]
[
]
[
]
234
M
MM
SSS
10 10 0000
1
− ⎡⎤
⎢⎥
⎢⎥
10 10 0000
1





⎢⎥
[
]
5
0000
1
10 1 0 2.83
0000
M
S
⎢⎥
=
−⎢⎥
⎢⎥
⎣⎦
[
]
6
0000
1
10 1 0 2.83
0000
M
S
⎢⎥
=





⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
77
⎣⎦
⎣⎦

Rotation matrices
cos sin 0 0 0 1 0 0
sin cos 0 0 1 0 0 0
θθ θθ
⎡⎤⎡⎤ ⎢⎥⎢⎥
[
]
1
90
sin cos 0 0 1 0 0 0
00cossin0001
T
R θ
θθ
θθ
=
⎢⎥⎢⎥
−−
⎢⎥⎢⎥ ==
⎢⎥⎢⎥
⎢⎥⎢⎥
00sincos0010
θ
θ
⎢⎥⎢⎥

− ⎣⎦⎣⎦
0100



⎢⎥
1000 0100
⎡⎤⎢⎥
[]
3
90
1000
000 1
T
R
θ
=−
⎢⎥⎢
⎥ =



⎢⎥
[
]
2
0
0100 0010 0001
T
R θ
=
⎢⎥⎢⎥=
⎢⎥
⎢⎥⎣⎦
0010
⎢⎥⎣

0001
⎢⎥⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN

[
]
1100
11 0 0
0707
R





⎢⎥
=
[
]
10 0 0
0100
R
−⎡⎤
⎢⎥

⎢⎥
[
]
5
45
0
.
707
0011
00 11
T
R θ
=
⎢⎥
=







[
]
4
180
00 10
000 1
T
R θ
=
⎢⎥
=
− ⎢⎥
⎢⎥

⎣⎦⎣⎦
[
]
1100 1100





⎢⎥
[
]
6
45
1100
0.707
001 1
0011
T
R θ
=−
⎢⎥
=





⎣⎦
0011
⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
79

[
]
[
]
[
]
[
]
T
SRSR
[
]
[
]
[
]
[
]
1111 MS T M T
SRSR
=
0100 10 100100
1000 0000 10001
T
− ⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥
−−
⎢⎥⎢⎥⎢⎥
=
0001 101000012
00 10 000000 10
⎢⎥⎢⎥⎢⎥
=

⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
−− ⎣⎦⎣⎦⎣⎦
0000
⎡⎤
0 100010 1 −−
⎡⎤⎡⎤
010 1 1
0000 2
⎡⎤⎢



⎥ =


⎢⎥
10000000 1
000 10 101 2
⎡⎤⎡⎤ ⎢⎥⎢⎥
⎢⎥⎢⎥ =
−− ⎢⎥⎢⎥
⎢⎥⎢⎥
0101
⎢⎥



00100000
⎢⎥⎢⎥ ⎣⎦⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN

10 10

⎡⎤
[]
2
10 10 0000 1
10 1 0
2
MS
S

⎡⎤⎢⎥
⎢⎥ =

⎢⎥
10 1 0
2
0000
⎢⎥⎢⎥
⎣⎦
[
]
0100 10100100
1000 000010001
T
S
−−− ⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
[
]
3
000 1 1010000 12
0010 00000010
MS
S
⎢⎥⎢⎥⎢⎥
=

−− ⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
01000 101
10000000
1
− ⎡⎤⎡⎤
⎢⎥⎢⎥
0000 010 1
1


⎢⎥
10000000
1
0001010 1 200 100000
⎢⎥⎢⎥

⎢⎥⎢⎥ =
− ⎢⎥⎢⎥
⎢⎥⎢⎥
⎣⎦⎣⎦
010 1
1
0000 20101
⎢⎥


⎥ =




⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
81
00 100000

⎣⎦⎣⎦
0101

⎣⎦

10 10− ⎡⎤
⎢⎥
[]
4
0000 1
10 1 0 2
0000
MS
S
⎢⎥⎢⎥ =
−⎢⎥
⎢⎥
⎣⎦
0000
⎣⎦
1100 10 10 1100
T

⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥
[]
5
1100 0000 11001
0.707 0.707
0011 1010 00112.83
MS
S
⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥
−−
⎢⎥⎢⎥⎢⎥ =
− ⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
00 11 0000 00 11
⎢⎥⎢⎥⎢⎥

− ⎣⎦⎣⎦⎣⎦
110011 11
1100 0 0 0 0
0.1766
00111111

−− ⎡⎤⎡ ⎤
⎢⎥⎢ ⎥
⎢⎥⎢ ⎥
=
⎢⎥⎢ ⎥
11 11
11 11
0.1766
1111










=
⎢⎥
00111111 0011 0 0 0 0

−−
⎢⎥⎢ ⎥ ⎢⎥⎢ ⎥
⎣⎦⎣ ⎦
1111 1111


⎢⎥⎢

−−


Dept. of CE, GCE KannurDr.RajeshKN

1100 1010 1100
T
⎡⎤⎡⎤⎡⎤
[]
6
1100 1010 1100 1100 0000 11001
0.707 0.707
001 1 1010 001 1
2.83
MS
S

−−
⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥ =

−−
⎢⎥⎢⎥⎢⎥
001 1 1010 001 1
2.83
0011 0000 0011
⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
1111
11 1 1
−−


⎢⎥
11001 1 11
11000000
−− ⎡⎤⎡ ⎤
⎢⎥⎢ ⎥
11 1 1
0.177
11 1 1
1111
⎢⎥



⎥ =








⎣⎦
11000000
0.177
0011 11 1 1
00110000
⎢⎥⎢ ⎥

⎢⎥⎢ ⎥ =

− ⎢⎥⎢ ⎥
⎢⎥⎢ ⎥

⎣⎦⎣ ⎦
1111
⎣⎦
00110000
⎣⎦⎣ ⎦
Dept. of CE, GCE KannurDr.RajeshKN

Assembled
g
lobal stiffness matrix
11
0 0.1766 0 0 0.1766 0 0 0.1766 0.1766 0
22
11
++ ++ − − −
⎡⎤
⎢⎥
⎢⎥
⎢⎥
g
11
0 0 0.1766 0 0.1766 0 0.1766 0.1766 0 0
22
11
0 0 0 0.1766 0 0 0.1766 0 0.1766 0.1766
22
11
++ ++ − − −
++ +− − −
⎢⎥ ⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
[]
11
0 0 0 0.1766 0 0.1766 0 0 0.1766 0.1766
22
11
0.1766 0.1766 0 0 0.1766 0 0 0.
22
J
S
−+−++ −
=
−− − ++++1766 0 0
11
0 1766 0 1766 0 0 0 0 0 1766 0 0 1766 0
⎢⎥ ⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
11
0
.
1766 0
.
1766 0 0 0 0 0
.
1766 0 0
.
1766 0
22
11
0 0.1766 0.1766 0 0 0 0.1766 0 0 0.1766
22
11
0 0 0 1766 0 1766 0 0 0 0 1766 0 0 1766
⎢⎥
−− ++++ −
⎢⎥
⎢⎥
⎢− − ++ +− ⎥
⎢⎥
⎢⎥
+++
⎢⎥
000
.
1766 0
.
1766 0 0 0 0
.
1766 0 0
.
1766
22


+

++
⎢⎥ ⎣⎦
128
0
DDD
=
==
Boundary conditions are:
Dept. of CE, GCE KannurDr.RajeshKN
128
0
DDD
Boundary conditions are:

0.677 -0.177 -0.500 0.000 -0.177 ⎡⎤
⎢⎥
Reduced stiffness matrix
[
]
-0.177 0.677 0.000 0.000 0.177
-0.500 0.000 0.677 0.177 0.000
FF
S=
⎢⎥⎢⎥
⎢⎥
⎢⎥
[
]
0.000 0.000 0.177 0.677 0.000
-0.177 0.177 0.000 0.000 0.677
⎢⎥⎢⎥
⎢⎥
⎣⎦⎣⎦
Dept. of CE, GCE KannurDr.RajeshKN
85

5


⎪⎪
{}
0
0
FC
A
⎪⎪⎪



=


⎪⎪
In this problem, the reduced load vector
(in global coords) can be directly written as
0
0
⎪⎪⎪


⎪⎩⎭
{}
[
]
{}
1
F
FF FC
D
SA

=
24.144


⎪⎪
4.829 1.000 3. 829 -1.000 1.000 5 ⎡⎤⎧⎫
⎢⎥⎪⎪
5.000
19.144
⎪⎪⎪






=

1.000 1.793 0. 793 -0.207 -0.207
3.829 0.793 4. 622 -1.207 0.793 =
0
0
⎢⎥⎪⎪ ⎢⎥⎪⎪


⎢⎥


⎢⎥
⎪⎪
-5.000
5.000
⎪⎪

⎪⎪⎪
⎩⎭
-1.000 -0.207 -1. 207 1.793 -0.207 0
1.000 -0.207 0. 793 -0.207 1.793 0
⎢⎥
⎪⎪
⎢⎥


⎢⎥


⎣⎦⎩⎭ Dept. of CE, GCE KannurDr.RajeshKN ⎣⎦⎩⎭

Assignment
Dept. of CE, GCE KannurDr.RajeshKN